Answer:
3600N
Explanation:
Given: m = 1200kg, Vo = 0m/s, Vf = 30m/s, Δt = 10s
ΣF = ma
we need to find 'a' first, using the definition of 'a' we get equation:
a = (Vf-Vo)/Δt
a = (30m/s)/10s
a = 3 m/s^2
now substitute into top equation
ΣF = ma
Fengine = (1200kg)(3m/s^2)
Fengine = 3600N
The work function is what we call the minimum energy that is required by an electron to leave the metal target in the photoelectric effect.
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
Answer:
<em>About four million tons of </em><em><u>matter</u></em><em> are converted to energy in the Sun’s core every second</em>
Explanation:
<u>The Sun
</u>
It's estimated that The Sun fuses near 600 million tons
of hydrogen into helium every second. As a result, 4 million tons of matter are converted to energy every second according to Einstein's equation 
Local winds are driven by temperature differences in areas fairly close to each other. If water and land absorbed and released heat at the same rate, there wouldn't be any temperature differences and nothing to power local winds. See the related link for further information.