I believe your answer should be C. Speed.
Answer:
"Narrow the focus of research question"
Explanation:
O Narrow the focus of research question
This is good! You can still use your question, but focus in on something so you have a proper research project.
O Add another research question
Would adding another question to an already broad question help? No.
O Use the very first source you find for your project
If your question is too broad, you should not use whatever you see first as it may be incorrect or does not answer the question
O Change the scope of your project
You could, but if you have a set scope for your project (a) you might not be able to change it (b) you don't need to restart
Have a nice day!
I hope this is what you are looking for, but if not - comment! I will edit and update my answer accordingly. (ノ^∇^)
- Heather
Answer:
The pressure is 6570 lbf/ft²
The temperature is 766 ⁰R
The velocity is 2746.7 ft/s
deflection angle behind the wave is 17.56⁰
Explanation:
Speed of air at initial condition:

γ is the ratio of specific heat, R is the universal gas constant, and T is the initial temperature.
initial mach number

then, 
based on the values obtained, read off the following from table;
P₂/P₁ = 3.285
T₂/T₁ = 1.473
Mₙ₂ = 0.6355
Thus;
P₂ = 3.285P₁ = 3.285(2000) = 6570 lbf/ft²
T₂ = 1.473T₁ = 1.473(520⁰R) = 766 ⁰R
Again; to determine the velocity and deflection angle, first we calculate the mach number.





Answer:
42.58kg
Explanation:
By Newton's second law, F = ma.
F is the force being applied, in this case 112N. a is the acceleration, in this case 2.63 m/s^2.
Thus, with some simple algebraic manipulation, we get the mass to equal:
m = F/a = 112N / 2.63 m/s^2 = 42.58kg
Answer:
The force is 7.8 N.
Explanation:
Given that,
Mass of small object = 2M
Mass of large object = 4M
Here, M = 1.0 kg
Force of the small block = 5.2 N
We need to calculate the acceleration of 4 kg block
Using formula of force




The 2 kg block is also accelerating at 1.3 m/s², making a total of 6 kg.
We need to calculate the force
Using formula of force

Put the value into the formula


Hence, The force is 7.8 N.