<span>On the ignition switch, the
ACC position provides power to electrical equipment including lights, wipers, warning lights and radio, without turning on the engine.
</span>
ACC is an Autonomous cruise
control or adaptive cruise
control is a system for
road vehicles that automatically adjusts the vehicle speed (can increase or
decrease the speed) to maintain a safe distance from vehicles ahead.
There are
also many other names of Autonomous cruise control such as active cruise control, intelligent cruise
control, or radar cruise control.
Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
g: Gravitational Acceleration
θ: Angle with the vertical
N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
m*g*cos(θ) - 0 = m*vf^2 / R
g*cos(θ) = vf^2 / R
vf^2 = R*g*cos(θ)
vf^2 = 1.45*32.2*cos(34)
vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
ΔK.E = ΔP.E
0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
vi^2 = vf^2 - 2*g*R*( 1 - cos(θ))
vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
vi^2 = 22.744
vi = 4.77 ft/s
Answer:
It will take 15.55s for the police car to pass the SUV
Explanation:
We first have to establish that both the police car and the SUV will travel the same distance in the same amount of time. The police car is moving at constant velocity and the SUV is experiencing a deceleration. Thus we will use two distance fromulas (for constant and accelerated motions) with the same variable for t and x:
1. 
2. 
Since both cars will travel the same distance x, we can equal both formulas and solve for t:

We simplify the fraction present and rearrange for our formula so that it equals 0:

In the very last step we factored a common factor t. There is two possible solutions to the equation at
and:

What this means is that during the displacement of the police car and SUV, there will be two moments in time where they will be next to each other; at
(when the SUV passed the police car) and
(when the police car catches up to the SUV)
The red box must way more. Gravitational potential energy is the product of a an objects mass times the acceleration due to gravity (which is constant on earth) times its height. Since the objects are on the same shelf they are at the same height, and since gravitational acceleration is constant as long as we stay on planet earth, then the mass is the only possible thing that could have changed. This means that the red box must weigh more than the blue box.