Answer: Chemical → Mechanical → Electrical → Radiant
Explanation:
First, the Hamster eats the carrot, then the hamster is getting chemical energy.
Now the hamster starts using his wheel, then he "transforms" the chemical energy into mechanical energy.
Now the mechanical energy is connected to a generator, this means that the mechanical energy (the rotation of the wheel) is being converted into electrical energy.
And we know that there is a light bulb powered by this electrical energy, then we have electrical energy being transformed into radiant energy.
Then the correct option is:
Chemical → Mechanical → Electrical → Radiant
Answer:
391.5 J
Explanation:
The amount of work done can be calculated using the formula:
- W = F║d
- where the force is parallel to the displacement
Looking at the formula, we can see that the mass of the object does not affect the work done on it.
Substitute the force applied and the displacement of the object into the equation.
- W = (87 N)(4.5 m)
- W = 391.5 J
The amount of work done on the object is 391.5 J in order to move it 4.5 meters with an applied force of 87 Newtons.
The problem seems to be incomplete because there is no question. However, from the problem description, the logical question is to find he acceleration needed by the jet to land on the airplane carrier. The working equation would be:
2ad = v₂² - v₁²
Since the jet stops, v₂ = 0. Substituting the values:
2(a)(95 m) = 0² - [(240 km/h)(1000 m/1 km)(1h/3600 s)]²
Solving for a,
<em>a = -23.39 m/s² (the negative sign indicates that the jet is decelerating)</em>
Answer: Force = 81 N
Explanation:
from Columbs law,
F = k(q1*q2)/r²
k = 9 x 10^9 Nm²/C²
F = (9 x 10^9)x (0.9x10^-5 x 2.5x10^-4)/(0.5)²
F = 81 Newtons