The weight of the meterstick is:
and this weight is applied at the center of mass of the meterstick, so at x=0.50 m, therefore at a distance
from the pivot.
The torque generated by the weight of the meterstick around the pivot is:
To keep the system in equilibrium, the mass of 0.50 kg must generate an equal torque with opposite direction of rotation, so it must be located at a distance d2 somewhere between x=0 and x=0.40 m. The magnitude of the torque should be the same, 0.20 Nm, and so we have:
from which we find the value of d2:
So, the mass should be put at x=-0.04 m from the pivot, therefore at the x=36 cm mark.
Its option 3 an object has potential energy
Answer:
<em>we</em><em> </em><em>have</em><em> </em><em>to</em><em> </em><em>use</em><em> </em><em>formula</em><em> </em><em>of</em><em> </em><em>volume</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>volume</em><em> </em><em>of</em><em> </em><em>a</em><em> </em><em>cuboid</em><em>.</em><em> </em><em>(</em><em> </em><em>i.e</em><em> </em><em>v</em><em> </em><em>=</em><em> </em><em>l</em><em> </em><em>×</em><em>b</em><em> </em><em>×</em><em>h</em><em>)</em>
Explanation:
here, let your length of cuboid be x cm, breadth be y cm and height be z cm .
now, formula to find volume of cuboid = length ×
breadth × height.
so, v( volume)= l (length)× b (breadth)× h (height)
or, v= x cm × y cm × z cm
therefore, volume is xyz cm^3..... answer.
<em><u>hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em>
That Energy Cannot Be Created Nor Destroyed
Ahhh this going to be confusing sorry...
1. α = Δω / Δt = 28 rad/s / 19s = 1.47 rad/s²
2. Θ = ½αt² = ½ * 1.47rad/s² * (19s)² = 266 rads
3. I = ½mr² = ½ * 8.7kg * (0.33m)² = 0.47 kg·m²
4. ΔEk = ½Iω² = ½ * 0.47kg·m² * (28rad/s)² = 186 J
5. a = α r = 1.47rad/s² * 0.33m = 0.49 m/s²
6. a = ω² r = (14rad/s)² * 0.33m = 65 m/s²
7. v = ω r = 28rad/s * ½(0.33m) = 4.62 m/s
8. s = Θ r = 266 rads * 0.33m = 88 m