Hello!
Because as you get closer to the surface of the earth, the more air that is on top of you. At the top of the atmosphere, there is less air, and everything is a vacuum, where you have no weight. When you get close to the earth, the weight of the air builds until it when you're at the very lowest point of the earths surface, all the air in the atmosphere above you is pressing down.
Thank You!
Answer:
θ=180°
Explanation:
The problem says that the vector product of A and B is in the +z-direction, and that the vector A is in the -x-direction. Since vector B has no x-component, and is perpendicular to the z-axis (as A and B are both perpendicular to their vector product), vector B has to be in the y-axis.
Using the right hand rule for vector product, we can test the two possible cases:
- If vector B is in the +y-axis, the product AxB should be in the -z-axis. Since it is in the +z-axis, this is not correct.
- If vector B is in the -y-axis, the product AxB should be in the +z-axis. This is the correct option.
Now, the problem says that the angle θ is measured from the +y-direction to the +z-direction. This means that the -y-direction has an angle of 180° (half turn).
Answer:
Neutrally charged!!!!!!!!!!!!!!!!!!!!!
Explanation:
Answer:
a) Not Accurate
b) Not Accurate
c) Accurate
d) Accurate
Explanation:
Part a
Not Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m
Part b
Not Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m
Part c
Accurate, because destructive interference would lead to maximum possible magnitude of < 3 m by varying the phase difference between two waves she can achieve the desired results.
Part d
Accurate, because constructive interference would lead to minimum possible magnitude of > 2 m by varying the phase difference between two waves she can achieve the desired results.