Answer:
Earth pulls the sun towards itself with a force equal to the ratio of the mass of the sun to the mass of Earth
The gravitational potential energy (G.P.E) of the ceiling fan is 712.95 Joules.
<u>Given the following data:</u>
- Mass of ceiling fan = 7.5 kg
<u>Scientific data:</u>
- Acceleration due to gravity = 9.8

To calculate the gravitational potential energy (G.P.E) of the ceiling fan:
<h3>
What is gravitational potential energy?</h3>
Gravitational potential energy (G.P.E) can be defined as the energy that is possessed by an object or body due to its position (height) above planet Earth.
Mathematically, gravitational potential energy (G.P.E) is given by this formula;

<u>Where:</u>
- G.P.E is the gravitational potential energy.
- m is the mass of an object.
- g is the acceleration due to gravity.
- h is the height of an object.
Substituting the given parameters into the formula, we have;

GPE = 712.95 Joules.
Read more on potential energy here: brainly.com/question/8664733
Answer:
ummm I didn't understand the question
Answer:
-5.24 m/s
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
Explanation:
Hi!
We can solve this problem considering each player as a point particle and taking into account the conservation of linear momentum.
Since the 99.8 kg player is moving towards the 77.8kg, the initial total momentum is:
m1*v1_i + m2*v2_i = (77.8kg)(8.1 m/s) - (99.8kg)(6.9 m/s)
** The minus sign indicates that the velocity vector points in the opposite direction with respect to the initial direction of the 77.8 kg player **
The final total momentum is equal to:
m1*v1_f + m2*v2_f = (77.8 kg)v1_f + (99.8 kg)(3.5 m/s)
The conservation of momentu tell us that:
m1v1_i + m2v2_i = m1v1_f + m2v2_f
Therefore:
v1_f =v1_i + (m2/m1)*(v2_i-v2_f)
v1_f = 8.1 m/s + (99.8 / 77.8) * (-6.9 - 3.5 m/s)
<u>v1_f = -5.24 m/s</u>
formed by the process of glaciation.