1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MaRussiya [10]
3 years ago
11

An 80.0-kg object is falling and experiences a drag force due to air resistance. The magnitude of this drag force depends on its

speed, v, and obeys the equation Fdrag=(12.0N⋅s/m)v+(4.00N⋅s2/m2)v2. What is the terminal speed of this object?
Physics
1 answer:
Zinaida [17]3 years ago
3 0

Answer:

 Terminal velocity of object = 12.58 m/s

Explanation:

 We know that the terminal velocity is attained when drag force and gravitational force are of the same magnitude.

Gravitational force = mg = 80 * 9.8 = 784 N

Drag force = 12.0v+4.00v^2

Equating both, we have

    784=12.0v+4.00v^2\\ \\ v^2+3v-196=0\\ \\ (v-12.58)(v+15.58)=0

  So v = 12.58 m/s or v = -15.58 m/s ( not possible)

 So terminal velocity of object = 12.58 m/s    

You might be interested in
Calculate the force of gravity between planet X and planet y if both planets are 3.75 X 10^11 m apart, planet X has a mass of 1.
GenaCL600 [577]

So, the force of gravity that the asteroid and the planet have on each other approximately \boxed{\sf{2.9 \times 10^{17} \: N}}

<h3>Introduction</h3>

Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

\boxed{\sf{\bold{F = G \times \frac{m_1 \times m_2}{r^2}}}}

With the following condition :

  • F = gravitational force (N)
  • G = gravity constant ≈ \sf{6.67 \times 10^{-11}} N.m²/kg²
  • \sf{m_1} = mass of the first object (kg)
  • \sf{m_2} = mass of the second object (kg)
  • r = distance between two objects (m)

<h3>Problem Solving</h3>

We know that :

  • G = gravity constant ≈ \sf{6.67 \times 10^{-11}} N.m²/kg²
  • \sf{m_X} = mass of the planet X = \sf{1.55 \times 10^{22}} kg.
  • \sf{m_Y} = mass of the planet Y = \sf{3.95 \times 10^{28}} kg.
  • r = distance between two objects = \sf{3.75 \times 10^{11}} m.

What was asked :

  • F = gravitational force = ... N

Step by step :

\sf{F = G \times \frac{m_X \times m_Y}{r^2}}

\sf{F = 6.67 \cdot 10^{-11} \times \frac{1.55 \cdot 10^{22} \cdot 3.95 \times 10^{28}}{(3.75 \times 10^{11})^2}}

\sf{F \approx \frac{40.84 \times 10^{-11 + 22 + 28}}{14.0625 \times 10^{22}}}

\sf{F \approx 2.9 \times 10^{39 - 22}}

\sf{F \approx 2.9 \times 10^{17} \: N}

<h3>Conclusion</h3>

So, the force of gravity that the asteroid and the planet have on each other approximately

\boxed{\sf{2.9 \times 10^{17} \: N}}

<h3>See More</h3>
  • Gravity is a thing has depends on ... brainly.com/question/26485200
8 0
1 year ago
Plz help me !!!!!!!!!!
ivolga24 [154]

Answer:

A. These vibrations can travel through solids, liquids, and gases, but not through <u>empty</u><u> </u><u>space</u>.

3 0
2 years ago
CAN SOMEONE HELP ME PLEASE!? After chasing its prey, a cougar leaves skid marks that are 236 m in length. Assuming the cougar sk
malfutka [58]

Answer:

u=36.8m/s

Explanation:

because of the acceleration is a constant acceleration we can use one of the "SUVAT" equations

u^2=v^2-2ā*s. where:

u^2 stands for intial velocity

v^2 stands for final velocity

since the cougar skidded to a complete stop the final velocity is zero.

u^2=v^2-2ā*s

u^2=(0)^2 -2(-2.87 m/s^2)*236 m

u^2=0+5.74m/s^2* 236m

u^2=1354.64m^2/s^2

u=√1354.64m^2/s^2

u=36.8m/s (approximate value)

when ever the acceleration is constant you can use one of the following equation to find the required value.

1. v = u + at. (no s)

2. s= 1/2(u+v)t. (no ā)

3. s=ut + 1/2at^2. ( no v)

4. v^2=u^2 + 2āS. (no t). 5. s= vt - 1/2at^2. (no u)

5 0
3 years ago
Explain your problem of<br>Federalism<br>​
telo118 [61]

That is more of a History of English question.

6 0
3 years ago
PE=30J, m=?, g=10m/s2, h=10m
OleMash [197]
Based on the given, this is probably a gravitational potential energy problem (PEgrav). The formula for PEgrav is:

PEgrav = mgh

Where:
m = mass (kg)
g = acceleration due to gravity
h = height (m)

With this formula you can derive the formula for your unknown, which is mass. First put in what you know and then solve for what you do not know.

PEgrav=mgh
30J=m(10)(10[tex] \frac{30}{100} =m)[/tex]

Do operations that you can with what is given first.

30J=m(100m)

Transpose the 100 to the other side of the equation. Do not forget that when you transpose, you do the opposite operation.

\frac{30}{100} =m

m = 0.30kg

5 0
3 years ago
Other questions:
  • If a speaker gives a sound intensity of 10−6w/m2 at a certain point, what is the sound intensity level β at that point?
    10·1 answer
  • Earthquakes often occur along _____ as a result of the build up of stress
    7·2 answers
  • A construction worker pushes a wheelbarrow with a total mass of 50.0kg. What is the acceleration of the wheelbarrow if the net f
    5·1 answer
  • G A dragster starts from rest and accelerates at 35 m/s2 m / s 2 . How fast is it going after t t
    11·1 answer
  • Light that is polarized along the vertical direction is incident on a sheet of polarizing material. Only 92% of the intensity of
    14·1 answer
  • What is the actual depth of rainfall shown in this rain gauge?
    10·2 answers
  • 2. A 4.0 kg magnetic toy car traveling at 3.0 m/s east collides and sticks to a 5.0 kg toy magnetic car also traveling at 2.0 m/
    15·1 answer
  • What is the relationship between CO2 levels and temperature?
    13·1 answer
  • Se deja caer una caja de madera de 4.5kg de masa desde una altura de 2.25metros .
    10·1 answer
  • Two positive point charges are 4.9cm apart. If the electric potential energy is 70.0 μJ, what is the magnitude of the force betw
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!