<h3>
Answer:</h3>
250.756 moles He
<h3>
Explanation:</h3>
From the question we are given;
Volume, L = 685 L
Temperature, T = 621 K
Pressure, P = 189 × 10 kPa
We are required to calculate the number of moles of the gas,
Using the Ideal gas equation,
PV = nRT, where P is the pressure, V is the volume, T is the temperature, n is the number of moles, and R is the ideal gas constant.
We can replace the known variables and constant in the equation to get the unknown variable, n.
Using ideal gas constant as 8.3145 L.kPa/K/mol



n = 250.756 moles
The moles of helium contained in the sphere is 250.756 moles
<span>When you have to balance an equation it means that you have to balance both parts of equation so that the numbers of each elements will have the same amount. According to this rule, it is quite easy to distinguish unbalanced reaction, and the answer is a) HBr + Ca(OH)2 → CaBr2 + H2O as you can see that amount of oxygen on both sides is not the same.</span>
Balanced chemical equation:
2 H2 + 1 O2 = 2 H2O
4 g H2 -------> 32 g O2 -----------> 36 g H2O
↓ ↓ ↓
14.0 g ---------> 2.0 g O2 ----------> mass H2O ?
32 * mass H2O = 2.0 * 36
32 * mass H2O = 72
mass of H2O = 72 / 32
mass of H2O = 2.25 g
hope this helps!.
Answer: The transition metals make up the middle block of he periodic table