The correct answer is <span>ball-and-stick model I just take it</span>
Sugar + water = 2) a solution
Oxygen- atomic number 8
1s² 2s² 2px² 2py¹ 2pz¹
mass defect = mass of constituents - mass of atom
N has 7p and 9n
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ 0.000549 amu
Nitrogen mass ~ 14.003074 amu
mass defect = (7*1.00728)-(7*1.00866)-(7*0.000549)
- 14.003074
= 0.11235amu
convert to energy, the binding energy = 1.68x10^-11 J
Answer:
a) IUPAC Names:
1) (<em>trans</em>)-but-2-ene
2) (<em>cis</em>)-but-2-ene
3) but-1-ene
b) Balance Equation:
C₄H₁₀O + H₃PO₄ → C₄H₈ + H₂O + H₃PO₄
As H₃PO₄ is catalyst and remains unchanged so we can also write as,
C₄H₁₀O → C₄H₈ + H₂O
c) Rule:
When more than one alkene products are possible then the one thermodynamically stable is favored. Thermodynamically more substituted alkenes are stable. Furthermore, trans alkenes are more stable than cis alkenes. Hence, in our case the major product is trans alkene followed by cis. The minor alkene is the 1-butene as it is less substituted.
d) C is not Geometrical Isomer:
For any alkene to demonstrate geometrical isomerism it is important that there must be two different geminal substituents attached to both carbon atoms. In 1-butene one carbon has same geminal substituents (i.e H atoms). Hence, it can not give geometrical isomers.