Answer:
V₂ = 0.6 V.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n is constant, and have different values of P, V and T:
<em>(P₁V₁T₂) = (P₂V₂T₁).</em>
<em></em>
V₁ = V, P₁ = P, T₁ = T.
V₂ = ??? V, P₂ = 1.25 P, T₂ = 0.75 T.
<em>∴ V₂ = (P₁V₁T₂)/(P₂T₁) =</em> (P)(V)(0.75 T)/(1.25 P)(T)<em> = 0.6 V.</em>
KE=.5mv^2
M=mass
v=velocity
.5(4)(100)=200
That should be the answer.
<span>My only guess is obtain a metal and heat it in a boiling water bath (of known temperature) this will be your initial temperature. Now obtain a calorimeter cup with water of known temperature as well. Place the metal into the calorimeter cup and record the temperature after 5 minutes. You now have delta T, mass of the metal, and Q. Solve for C.
Hope this helps xox :)</span>
Answer:
Na2CO3 is the formula for sodium carbornate
From the information we have, this block of brown sugar has a volume of 8cm3
The mass of the block is 12. 9 grams.
We need to find out the density of the sugar.
For a solid material the formula for calculating density is given as:
Density = mass / volume
Therefore we simply fit in the above given values into this formula, so:
Density = 12.9 / 8
Density = 1.61
Therefore the density of the block of sugar is 1.61g/ml