For every 1 mole of C6H12O6, you need 6 moles of water. Multiply the 2.5 moles you are trying to make by the 6 of water you need, and 4) 15 is your answer.
Answer:
0.967mole
Explanation:
Given parameters:
Volume of NH₄Cl = 21.67L
Unknown:
Number of moles = ?
Solution:
If we assume that the volume was taken at standard temperature and pressure,
Then;
Number of moles =
Number of moles =
= 0.967mole
Answer:
im gunna save my answer so no one can take it:)
Explanation:
I tried my best
Answer:
The particles that compose a gas are so small compared to the distances between them that the volume of the individual particles can be assumed to be negligible.
Explanation:
This is a postulate of the Kinetic Molecular Theory.
A is wrong. KMT assumes the that the volume of the particles is negligible.
B is wrong. KMT assumes that the distance between the particles is muck greater than their size.
D is wrong. It takes the large distances as a fact. KMT uses this as an assumption.
KMnO4 has the incorrect set of oxidation numbers. Whenever there is an alkali metal, it has an oxidation number of +1. As you can see, K is said to have an oxidation number of +2, so it is incorrect.