Answer : The oxidation state of Mg in Mg(s) is (0).
Explanation :
Oxidation number or oxidation state : It represent the number of electrons lost or gained by the atoms of an element in a compound.
Oxidation numbers are generally written with the sign (+) and (-) first and then the magnitude.
Rules for Oxidation Numbers are :
The oxidation number of a free element is always zero.
The oxidation number of a monatomic ion equals the charge of the ion.
The oxidation number of Hydrogen (H) is +1, but it is -1 in when combined with less electronegative elements.
The oxidation number of oxygen (O) in compounds is usually -2.
The oxidation number of a Group 17 element in a binary compound is -1.
The sum of the oxidation numbers of all of the atoms in a neutral compound is zero.
The sum of the oxidation numbers in a polyatomic ion is equal to the charge of the ion.
The given chemical reaction is:

In the given reaction, the oxidation state of Mg in Mg(s) is (0) because it is a free element and the oxidation state of Mg in
is (+2).
Hence, the oxidation state of Mg in Mg(s) is (0).
Answer:

In which [Ag+] in negligibly small and the concentration of each reactant is 1.0 M
The answer is A) PO43- < NO3- < Na+
Explanation:
Ag+ is removed from the solution just like PO43-, so there are just 2 possible answers at this point: a or b. Then we can notice that Na3PO4 releases 3 moles of Na+ and just 1 mole of NO3-
We have 100mL of each reactant with the same concentration for both (1.0 M) so:
(0.1)(1)(3)= 0.3 mol Na+
(0.1)(1)= 0.1 mol NO3-
so PO43- < NO3- < Na+
C a giraffe that eats the leaves off trees
Answer: The initial acceleration of the proton = (4.56 × 10^23) m/s2
The initial acceleration of the electron = (8.36 × 10^26) m/s2
Explanation: The force of attraction between the proton and electron can be computed using the statements of Coulomb's law which state that the force of attraction between two charged particles is directly proportional to the product of the two charges and inversely proportional to the square of their distances apart.
F = (Kq1q2)/(r^2) where K = (9 × (10^9) Nm(C^-2))
But q1 is the charge on a proton = (1.6 × (10^-19)) C
q2 is charge on an electron = -(1.6 × (10^-19)) C
r = (5.50 × (10^-10))mm = (5.50 × (10^-13))m
Computing all that, F = 0.0007616529 N = (7.62 × 10^-4) N
But the force of attraction is converted to that required for motion when they're released.
F = ma.
For proton, m = (1.67 × 10^-27) kg
a = F/m = 0.000762/(1.67 × 10^-27) = (4.56 × 10^23) m/s2
For electron, m = (9.11 × 10^-31) kg
a = F/m = 0.000762/(9.11 × 10^-31) = (8.36 × 10^26) m/s2
QED!
Answer no 1)
The correct option is A) He did not try to learn it. It was natural.
As Sergei did not put any effort in learning the art of tongue rolling, hence we can assume that this characteristic was found to be naturally present in Sergei. This hence shows that Sergei has acquired the characteristic of tongue rolling through inheritance.
Answer No 2)
We can learn whether other persons in the class have the characteristic of tongue rolling or not by observing them. In the students who can roll their tongue we can conduct a survey asking them whether they tried to learn the trait or did not put any effort to learn tongue rolling. The students who learned the skill by practicing might have acquired the characteristic from learning.
Answer No 3)
We can survey the class for features like eye color, hair color, height, weight. We can ask certain questions in our survey like whether the characteristic can be seen in either the mother, father or other siblings.