A type O star is likely to appear blue in color.
The blue type-O stars are solely thirty to fifty times a lot of large than the sun. However, O stars burn 1,000,000 times brighter and it has a very short lifespan. <span>O stars </span>solely<span> last </span>a couple of<span> million years before they die in spectacular </span>star<span> explosions.</span>
Answer:
38.6 mi/h
Explanation:
7.4 mi/h = 7.4mi/h * (1/60)hour/min * (1/60) min/s = 0.00206 mi/s
Let v (mi/s) be your original speed, then the time t it takes to go 1 mi/s is
t = 1/v
Since you increase v by 0.00206 mi/s, your time decreases by 15 s, this means
t - 15 = 1/(v+0.00206)
We can substitute t = 1/v to solve for v

We can multiply both sides of the equation with v(v+0.00206)
v+0.00206 - 15v(v+0.00206) = v

v = -0.01278 or v = 0.01
0724 mi/s
Since v can only be positive we will pick v = 0.010724 mi/s or 0.010724*3600 = 38.6 mi/h
Answer:
Shadows are formed when an opaque object or material is placed in the path of rays of light. The opaque material does not let the light pass through it. The light rays that go past the edges of the material make an outline for the shadow
Explanation:
Answer:
Fg = gravitational force. When a force is applied on the body, not only the applied force is acting there are many other forces like gravitational force Fg, frictional force Ff and the normal force that balances the other force. Therefore, the net force formula is given by, FNet = Fa + Fg + Ff + FN.
In this case, you need the formula below where:
F = force
k = coulombs constant 8.99 x10^{9} N.m^{2} . C^{-2}
q1 = electric charge 1
q2 = electric charge 2
r = the distance between the charges

pls note: make sure your units are correct (in meters etc, not fm (<em>femto-meters</em>)).
Curiously, this question doesn't tell you what atom you are next to the nucleus of. Different numbers of protons in the nucleus of the atom will make for vastly different forces in your answer...