Answer:
Choice A: approximately
, assuming that the two pistons are connected via some confined liquid to form a simple machine.
Explanation:
Assume that the two pistons are connected via some liquid that is confined. Pressure from the first piston:
.
By Pascal's Principle, because the first piston exerted a pressure of
on the liquid, the liquid will now exert the same amount of pressure on the walls of the container.
Assume that the second piston is part of that wall. The pressure on the second piston will also be
. In other words:
.
To achieve a force of
, the surface area of the second piston should be:
.
An inner transition metal (ITM) is one of a group of chemical elements on the periodic table. They are normally shown in two rows below all the other elements. They include elements 57-71 (lanthanides) and 89-103 (actinides).
Answer:
0.61°
Explanation:
Since the box move at constant velocity, it means there is no acceleration then we can say it has a balanced force system.
Pulling force= resistance force
From the formula for pulling force,
F(x)= Fcos(θ)
= 425×cos(35.2)
=347N
The force exerted downward at an angle of 35.2° below the horizontal= Fsin(θ)= 425sin(35.2)
=425×0.567=245N
Resistance force= (325N+ 245N) (α)= 570N(α)
We can now equates the pulling force to resistance force
570 (α)= 347N
(α)= 347/570
= 0.61
Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N