Answer:
10250 N/C leftwards
Explanation:
QA = 4 micro Coulomb
QB = - 5 micro Coulomb
AP = 6 m
BP = 2 m
A is origin, B is at 4 m and P is at 6 m .
The electric field due to charge QA at P is EA rightwards

The electric field due to charge QB at P is EB leftwards

The resultant electric field at P due the charges is given by
E = EB - EA
E = 11250 - 1000 = 10250 N/C leftwards
Answer:
"Magnitude of a vector can be zero only if all components of a vector are zero."
Explanation:
"The magnitude of a vector can be smaller than length of one of its components."
Wrong, the magnitude of a vector is at least equal to the length of a component. This is because of the Pythagoras theorem. It can never be smaller.
"Magnitude of a vector is positive if it is directed in +x and negative if is is directed in -X direction."
False. Magnitude of a vector is always positive.
"Magnitude of a vector can be zero if only one of components is zero."
Wrong. For the magnitude of a vector to be zero, all components must be zero.
"If vector A has bigger component along x direction than vector B, it immediately means, the vector A has bigger magnitude than vector B."
Wrong. The magnitude of a vector depends on all components, not only the X component.
"Magnitude of a vector can be zero only if all components of a vector are zero."
True.
You multiply the high length and width and if your using centimeters then divide by 500 and then there's your answer.hoped this helped.
ok i know what your talking about
Answer:
The distance covered by the sprinter, s = 40 m
Explanation:
Given data,
The initial velocity of the sprinter, u = 0 m/s
The acceleration of the sprinter, a = 5 m/s²
The time period of acceleration of the sprinter, t = 4 s
Using the II equations of motion
s = ut + ½ at²
= 0 + ½ (5) (4)²
= 40 m
Hence, the distance covered by the sprinter, s = 40 m