<h2>Answer: Resonance
</h2>
Resonance is a phenomenon that occurs when a body capable of vibrating is subjected to the action of a periodic force, whose frequency of vibration approaches the characteristic frequency of vibration (called resonance frequence) of said body. This is due a relatively small force applied in a repeated form, causing the amplitude of the oscillating system to become very large.
In other words, for the specific case of sound waves, this phenomenon occurs when the frequency of the wave that is external to the system or body coincides with the resonance frequency (characteristic frequency that reaches the maximum degree of oscillation) of this system or body.
In these circumstances the body vibrates, progressively increasing the amplitude of movement after each successive actions of the force. However, this effect can be destructive in some rigid materials.
Answer:
The radius of coil 2 = 2.7 cm
Explanation:
The number of coils = 2
It is given that both carry equal current and rotates in the magnetic field.
The given radius of coil 1 = 4.0 cm
Coil 1 rotates = 0.21 T field
Coil 2 rotates = 0.45 T filed.
The radius of coil 2 need to be calculated.
Torque action on dipole is given by
here T1 = T2

Answer:2.47
Explanation:
So, the beaker weighs 1.40N when filled with water, brine of density weighs about 1.7N, you add the density + water. Have a good day!
Answer: Conduction- Touch transfer heat and Earth warms air
Convection- liquid/gas transfers heat and warm air rises
Radiation- Sun heats Earth and Waves transfer heat
Explanation:
Answer:
"h" signifies Planck's constant
Explanation:
In the equation energy E = h X v
The "h" there signifies Planck's constant
Planck's constant is a value, that shows the rate at which the energy of a photon increases/decreases, as the frequency of its electromagnetic wave changes.
It was named after Max Planck who discovered this unique relationship between the energy of a light wave and its frequency.
Planck's constant, "h" is usually expressed in Joules second
Planck's constant = 