Complete Question
The diagram for this question is shown on the first uploaded image
Answer:
, 
Explanation:
From the question we are told that
The initial velocity of the arcade ball is 
The time taken by the ball to enter the basket is 
Generally the x -component of the initial velocity is
=>
Generally the y -component of the initial velocity is
=> 
Generally the distance x is mathematically represented as

=>
=>
Generally from kinematic equation the distance y is mathematically represented as

=> 
=> 
-1- was created in the 1600 by william gilbert
-2-When the charge is positive, electrons in the metal of the electroscope are attracted to the charge and move upward out of the leaves. This results in the leaves to have a temporary positive charge and because like charges repel, the leaves separate. When the charge is removed, the electrons return to their original positions and the leaves relax
3-
An electroscope is made up of a metal detector knob on top which is connected to a pair of metal leaves hanging from the bottom of the connecting rod. When no charge is present the metals leaves hang loosely downward. But, when an object with a charge is brought near an electroscope, one of the two things can happen.
Explanation:
Given:
Acceleration of car = 10 m/s
Distance travelled in 5 sec = 150 m
To find:
Distance travelled in the next 5 seconds
Concept:
There are 2 ways to app this kind of questions .
Either , we can find the total distance travelled in 10 seconds and then subtract 150 m from it.
Whereas , you can find out the final velocity at the end of the 5th seconds. Using equation of motion, then get the distance travelled in next 5 seconds.
Calculation:
v² = u² + 2as
=> ( u + at)² = u² + 2as
=> u² + 2uat + a²t² = u² + 2as
=> 2uat + (at)² = 2as
=> 2u (10)(5) + (10 × 5)² = 2 (10)(150)
=> 100u = 3000 - 2500
=> 100u = 500
=> u = 5 m/s
Distance travelled in 10 seconds :
s = ut + ½at²
=> s = (5 × 10) + ½(10)(10)²
=> s = 50 + 500
=> s = 550 m
Distance travelled in the 2nd half will be :
d = 550 - 150
=> d = 400 m
So final answer is :
Answer:
0.6983 m/s
Explanation:
k = spring constant of the spring = 0.4 N/m
L₀ = Initial length = 11 cm = 0.11 m
L = Final length = 27 cm = 0.27 m
x = stretch in the spring = L - L₀ = 0.27 - 0.11 = 0.16 m
m = mass of the mass attached = 0.021 kg
v = speed of the mass
Using conservation of energy
Kinetic energy of mass = Spring potential energy
(0.5) m v² = (0.5) k x²
m v² = k x²
(0.021) v² = (0.4) (0.16)²
v = 0.6983 m/s
To solve this problem we will apply the concepts related to the calculation of the speed of sound, the calculation of the Mach number and finally the calculation of the temperature at the front stagnation point. We will calculate the speed in international units as well as the temperature. With these values we will calculate the speed of the sound and the number of Mach. Finally we will calculate the temperature at the front stagnation point.
The altitude is,

And the velocity can be written as,


From the properties of standard atmosphere at altitude z = 20km temperature is



Velocity of sound at this altitude is



Then the Mach number



So front stagnation temperature



Therefore the temperature at its front stagnation point is 689.87K