
<em>Magnetite is a Natural magnet</em>
Answer:
Si logra alcanzar el bus.
Explanation:
Para poder solucionar este problema debemos de tener en cuenta que Alicia corre a velocidad constante para poder alcanzar el bus. La formula de la cinematica que tiene en cuenta la velocidad constante es la siguiente:

donde:
Xf = Ubicacion del punto donde se encuentra el bus [m]
Xo = Ubicacion desde donde esta Alicia [m]
v = velocidad constante = 5 [m/s]
t = tiempo [s]
Xf - Xo = 15 [m]
15 = 5*t
t = 3 [s]
Ahora con el tiempo podemos encontrar la velocidad del bus por medio de la siguiente ecuacion de cinematica para la aceleracion constante:

donde:
Vf = velocidad del bus despues de los 3 [s]
Vi = velocidad inicial = 0
a = aceleracion = 0.5 [m/s^2]
Vf = 0 + (0.5*3)
Vf = 1.5 [m/s]
La velocidad del bus es menor que la velocidad de Alicia, por ende Alicia alcanzara el bus.
Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
Atomic Mass Unit is the answer
Answer:
speed of light simulating traveling at the speed of light. Speed of light, speed at which light waves propagate through different materials. In particular, the value for the speed of light in a vacuum is now defined as exactly 299,792,458 metres per second
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium