1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
3 years ago
7

Does the following decrease or increase normal force? Pulling up on the object.

Physics
2 answers:
Maurinko [17]3 years ago
7 0

Answer:

babyyyy baby yay ohhhhh I live the tye sjshs

Sav [38]3 years ago
6 0

Answer:

gravy+gravity = time X nuclious so your ANSWER WILL BE gravity ;-;

Explanation:

You might be interested in
9. If the musician hit the drum on a stage, how would the sound wave behave differently if he hit it the drum if the drum were s
egoroff_w [7]
I think it would be yes because the drum is submerged in water and the water would slow the sound waves, making the sound softer. Right?
4 0
3 years ago
A charge is divided q1 and (q-q1)what will be the ratio of q/q1 so that force between the two parts placed at a given distance i
Arturiano [62]

Answer:

q / q_{1} = 2, assuming that q_{1} and (q - q_{1}) are point charges.

Explanation:

Let k denote the coulomb constant. Let r denote the distance between the two point charges. In this question, neither k and r depend on the value of q_{1}.

By Coulomb's Law, the magnitude of electrostatic force between q_{1} and (q - q_{1}) would be:

\begin{aligned}F &= \frac{k\, q_{1}\, (q - q_{1})}{r^{2}} \\ &= \frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\end{aligned}.

Find the first and second derivative of F with respect to q_{1}. (Note that 0 < q_{1} < q.)

First derivative:

\begin{aligned}\frac{d}{d q_{1}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\right] \\ &= \frac{k}{r^{2}}\, \left[\frac{d}{d q_{1}} [q\, q_{1}] - \frac{d}{d q_{1}}[{q_{1}}^{2}]\right]\\ &= \frac{k}{r^{2}}\, (q - 2\, q_{1})\end{aligned}.

Second derivative:

\begin{aligned}\frac{d^{2}}{{d q_{1}}^{2}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q - 2\, q_{1})\right] \\ &= \frac{(-2)\, k}{r^{2}}\end{aligned}.

The value of the coulomb constant k is greater than 0. Thus, the value of the second derivative of F with respect to q_{1} would be negative for all real r. F\! would be convex over all q_{1}.

By the convexity of \! F with respect to \! q_{1} \!, there would be a unique q_{1} that globally maximizes F. The first derivative of F\! with respect to q_{1}\! should be 0 for that particular \! q_{1}. In other words:

\displaystyle \frac{k}{r^{2}}\, (q - 2\, q_{1}) = 0<em>.</em>

2\, q_{1} = q.

q_{1} = q / 2.

In other words, the force between the two point charges would be maximized when the charge is evenly split:

\begin{aligned} \frac{q}{q_{1}} &= \frac{q}{q / 2} = 2\end{aligned}.

3 0
3 years ago
A generator with �# ' = 300 V and Zg = 50 Ω is connected to a load ZL = 75 Ω through a 50-Ω lossless line of length l = 0.15λ. (
ki77a [65]

Answer:

a. Zin = 41.25 - j 16.35 Ω

b. V₁ = 143. 6 e⁻ ¹¹ ⁴⁶

c.  Pin = 216 w

d. PL = Pin = 216 w

e. Pg = 478.4 w , Pzg = 262.4 w

Explanation:

a.

Zin = Zo * [ ZL + j Zo Tan (βl) ] / [ Zo + j ZL Tan (βl) ]  

βl = 2π / λ * 0.15 λ = 54 °

Zin = 50 * [ 75 + j 50 Tan (54) ] / [ 50 + j 75 Tan (54) ]

Zin = 41.25 - j 16.35 Ω

b.

I₁ = Vg / Zg + Zin ⇒ I₁ = 300 / 41.25 - j 16.35 = 3.24 e ¹⁰ ¹⁶

V₁ = I₁ * Zin = 3.24 e ¹⁰ ¹⁶ * ( 41.25 - j 16.35)

V₁ = 143. 6 e⁻ ¹¹ ⁴⁶

c.

Pin = ¹/₂ * Re * [V₁ * I₁]

Pin = ¹/₂ * 143.6 ⁻¹¹ ⁴⁶ * 3.24 e ⁻ ¹⁰ ¹⁶ = 143.6 * 3.24 / 2 * cos (21.62)

Pin = 216 w

d.

The power PL and Pin are the same as the line is lossless input to the line ends up in the load so

PL = Pin

PL = 216 w

e.

Pg Generator

Pg = ¹/₂ * Re * [ V₁ * I₁ ] = 486 * cos (10.16)

Pg = 478.4 w

Pzg dissipated

Pzg = ¹/₂ * I² * Zg = ¹/₂ * 3.24² * 50

Pzg = 262.4 w

4 0
3 years ago
Will give you brainliest pls help
ExtremeBDS [4]

1. All the relevant resistors are in series, so the total (or equivalent) resistance is the sum of the resistances of the resistors: 20 Ω + 80 Ω + 50 Ω = 150 Ω [choice A].

2. The ammeter will read the current flowing through this circuit. We can find the ammeter reading using Ohm's law in terms of the electromotive force provided by the battery: I = ℰ/R = (30 V)(150 Ω) = 0.20 A [choice C].

3. The voltmeter will measure the potential drop across the 50 Ω resistor, i.e., the voltage at that resistor. We know from question 2 that the current flowing through the resistor is 0.20 A. So, from Ohm's law, V = IR = (0.20 A)(50 Ω) = 10. V, which will be the voltmeter reading [choice F].

4. Trick question? If the circuit becomes open, then no current will flow. Moreover, even if the voltmeter were kept as element of the circuit, voltmeters generally have a very high resistance (an ideal voltmeter has infinite resistance), so the current moving through the circuit will be negligible if not nil. In any case, the ammeter reading would be 0 A [choice B].

4 0
2 years ago
Any help would be highly appreciated, preferably with steps too!
qwelly [4]

Answer:

Help with what:?

Explanation:

5 0
3 years ago
Other questions:
  • What would a drummer do to make the sound of a drum give a note of lower pitch?
    12·1 answer
  • Describe how kinetic and potential energy change as a diver climbs up to a diving board and then dives into the water below.
    10·2 answers
  • during the spin dry cycle of a washing machine, the motor slows from 90 rad/s to 30 rad/s while turning the drum though an angle
    10·1 answer
  • Which have the longest wavelengths--light waves, x-rays, or radio waves?
    8·1 answer
  • The average person passes out at an acceleration of 7g (that is, seven times the gravitational acceleration on earth). suppose a
    11·1 answer
  • Which question should Trudy write
    6·1 answer
  • R = (2+2+1) i - (t+1)] + t3 k<br> what is the direction of initial velocity
    13·1 answer
  • When did the object have the highest average
    12·1 answer
  • a rock of mass of 540 g in the air is found to have an apparent mass of 342 g when submerged in water (a) calculate the weight o
    8·1 answer
  • Which statement describes the movement of carbon as it cycles through the environment?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!