Consider the acid spill. It is already starting to do nasty things to, say, the floor or counter. So you grab the bottle of 10% NaOH and pour some on the spill. All of a sudden, you get a great deal of heat, and you don't have any visual evidence whether your put on too little or too much. But you have added more liquid to the spill, generated more heat, and will get more damage. You have made a bigger mess, and if you added too much, you then have a neutralization problem to deal with.
And if it is something like a strong sulfuric acid solution, adding sodium hydroxide solution will be extremely exothermic, and you could get some really nasty results.
So now approach the spill with a handful of baking soda. You sprinkle it on the spill. It fizzes, and carbon dioxide is given off. That actually, in a very tiny way, moderates the temperature of the neutralization. And you can keep adding baking soda until the fizzing stops, and then perhaps some water to mix everything well. But what you have done is kept the volume to a minimum, added a neutralization agent that has a visible endpoint (no more gas being given off), and you don't suddenly have a huge amount of highly basic solution because you added too much.
And what is also nice about baking soda is that you can toss some with your hand or even with a spoon, and get some distance from the spill. With a liquid, you have to get much closer
i hope this helped..
A source of error is any factor that may affect the outcome of an experiment. There are countless conceivable sources of error in any experiment; you want to focus on the factors that matter most. Identify each source of error specifically and then explain how that source of error would have affected the results. Keep in mind that an "error" to a scientist does not mean "mistake"; it more closely means "uncertainty".
Many students are tempted to say "human error", but this term is vague and lazy; any decent teacher will not accept it. Instead, think about specific things that happened during the lab exercise where the end results may have been affected.
To give an example one might find in a bio lab: perhaps a water bath's temperature was not monitored very carefully and you found that an enzyme's activity was greater than you expected. In that case, you could write something like,
"The temperature of the water bath during this exercise was not monitored carefully. It is possible that it was warmer or cooler than intended, and this would have affected the enzyme activity accordingly. The fact that our enzyme activity was found to be higher than expected leads me to believe that perhaps the water bath was too warm."
I believe visible light is made from photons
Relative formula mass C₅H₁₁ = 71
Now divide the molar mass by the RFM = 142.32 / 71 = 2
Now C₍₅ₓ₂₎H₍₁₁ₓ₂) = C₁₀H₂₂
Hope that helps
Answer:
100g / (5.2g/cm3)
= 100g / (5.2g / 1cm3)
= 100g x 1cm3 / 5.2 g
= 19.2 cm3
Since 1 cm3 = 1 ml, your answer is 19.2 ml.