Answer:
The maximum amount of work that can be done by this system is -2.71 kJ/mol
Explanation:
Maximum amount of work denoted change in gibbs free energy
during the reaction.
Equilibrium concentration of B = 0.357 M
So equilibrium concentration of A = (1-0.357) M = 0.643 M
So equilibrium constant at 253 K, ![K_{eq}= \frac{[B]}{[A]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%20%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D)
[A] and [B] represent equilibrium concentrations

When concentration of A = 0.867 M then B = (1-0.867) M = 0.133 M
So reaction quotient at this situation, 
We know, 
where R is gas constant and T is temperature in kelvin
Here R is 8.314 J/(mol.K), T is 253 K, Q is 0.153 and
is 0.555
So, 
= -2710 J/mol
= -2.71 kJ/mol
The correct answer of the given question above would be FLAGELLA. The structure that makes it possible for some kinds of prokaryotic cells to move around is the FLAGELLA. Prokaryotic cell is one of the types of cells. The other type is the Eukaryotic cell. This cell is found in two Kingdoms of life which are Archaea and Bacteria. Hope this answer helps.
Answer:
396 g OF CO2 WILL BE PRODUCED BY 270 g OF GLUCOSE IN A RESPIRATION PROCESS.
Explanation:
To calculate the gram of CO2 produced by burning 270 g of gucose, we first write out the equation for the reaction and equate the two variables involved in the question;
C6H12O6 + 6O2 -------> 6CO2 + 6H2O
1 mole of C6H12O6 reacts to form 6 moles of CO2
Then, calculate the molar mass of the two variables;
Molar mass of glucose = ( 12 *6 + 1* 12 + 16* 6) g/mol = 180 g/mol
Molar mass of CO2 = (12 + 16 *2) g/mol = 44 g/mol
Next is to calculate the mass of glucose and CO2 involved in the reaction by multiplying the molar mass by the number of moles
1* 180 g of glucose yields 6 * 44 g of CO2
180 g of glucose = 264 g of CO2
If 270 g of glucose were to be used, how many grams of CO2 will be produced;
so therefore,
180 g of glucose = 264 g of CO2
270 g of glucose = x grams of CO2
x = 264 * 270 / 180
x = 71 280 / 180
x = 396 g of CO2.
In other words, 396 g of CO2 will be produced by respiration from 270 g of glucose.
Answer:
it's A
Explanation:
product being used by everyone
hope it helps!
I believe it means that it takes a lot of heat in joules to make silicon vaporize so it stays solid until a great deal of heat has been added. By comparison, water has a latent heat of about 2260 joules per gram so vaporizes much more readily than silicon.