Answer:
See below
Explanation:
.75 = 1/2^(40/h)
log .75 / ( log 1/2) = 40 / h
<u>h = half life = 96.37683 min</u>
Answer: n=15.56moles
Explanation:
PV = nRT
where
P is pressure in atmospheres
V is volume in Liters
n is the number of moles of the gas
R is the ideal gas constant = given as (0.0821L -atm/k-mol
PV = nRT
n= PV/RT
n= (1.5 X 230)/ (0.0821 X 270)
n= 15.56 moles
I'm pretty sure the answer is 0.833 atm.
Hope I helped! <3
-cara
Answer:
1. The electronic configuration of X is: 1s2 2s2 sp6 3s2
2. The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
3. The formula of the compound form by X and Y is given as: XY
Explanation:
For X to loss two electrons, it means X is a group 2 element. X can be any element in group 2. The electronic configuration of X is:
1s2 2s2 sp6 3s2
To get the electronic configuration of the anion of element Y, let us find the configuration of element Y. This is done as follows:
Y receives two electrons from X to complete its octet. Therefore Y is a group 6 element. The electronic configuration of Y is given below
1s2 2s2 2p4
The configuration of the anion of Y (i.e Y^2-) is 1s2 2s2 2p6
The formula of the compound form by X and Y is given below :
X^2+ + Y^2- —> XY
Their valency will cancel out thus forming XY
Answer:
They experience the same pressure
Explanation:
To answer this question, we recall Pascal's, Law Pascal's law states that an increase in pressure at a point in a confined cylinder containing a fluid, there is also an equal increase at all other points in that cylinder.
According to Pascal's law the pressure if the pressure expereienced by the larger diameter piston increases, the pressure experienced by the smaller diameter piston also increases by the same amount
However considering that pressure = Force/area F1/A1 =F2/A2
thus where A1 = πD²÷4 and A2 = πD²÷ 16 we have
we have F1×4/πD² = F2×16/πD² or F1 = 4× F2
They experience the same pressure but the larger cylinder delivers four times the force transmitted from he outside to the smaller cylinder