Given Information:
Inductance = L = 5 mH = 0.005 H
Time = t = 2 seconds
Required Information:
Current at t = 2 seconds = i(t) = ?
Energy at t = 2 seconds = W = ?
Answer:
Current at t = 2 seconds = i(t) = 735.75 A
Energy at t = 2 seconds = W = 1353.32 J
Explanation:
The voltage across an inductor is given as

The current flowing through the inductor is given by

Where L is the inductance and i(0) is the initial current in the inductor which we will assume to be zero since it is not given.
![i(t) = \frac{1}{0.005} \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \,+ 0\\\\i(t) = 200 \int_0^t \mathrm{5(1-e^{-0.5t}}) \,\mathrm{d}t \\\\i(t) = 200 \: [ {5\: (t + \frac{e^{-0.5t}}{0.5})]_0^t \\i(t) = 200\times5\: \: [ { (t + 2e^{-0.5t} + 2 )] \\](https://tex.z-dn.net/?f=i%28t%29%20%3D%20%5Cfrac%7B1%7D%7B0.005%7D%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%2C%2B%200%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5Cint_0%5Et%20%5Cmathrm%7B5%281-e%5E%7B-0.5t%7D%7D%29%20%5C%2C%5Cmathrm%7Bd%7Dt%20%5C%5C%5C%5Ci%28t%29%20%3D%20200%20%5C%3A%20%5B%20%7B5%5C%3A%20%28t%20%2B%20%5Cfrac%7Be%5E%7B-0.5t%7D%7D%7B0.5%7D%29%5D_0%5Et%20%5C%5Ci%28t%29%20%3D%20200%5Ctimes5%5C%3A%20%5C%3A%20%5B%20%7B%20%28t%20%2B%202e%5E%7B-0.5t%7D%20%2B%202%20%29%5D%20%5C%5C)

So the current at t = 2 seconds is

The energy stored in the inductor at t = 2 seconds is

C and A I think cause I don’t really remember this I done before it his to be C and A
Answer:
I=9.6×e^{-8} A
Explanation:
The magnetic field inside the solenoid.
B=I*500*muy0/0.3=2.1×e ^-3×I.
so the total flux go through the square loop.
B×π×r^2=I×2.1×e^-3π×0.025^2
=4.11×e^-6×I
we have that
(flux)'= -U
so differentiating flux we get
so the inducted emf in the loop.
U=4.11×e^{-6}×dI/dt=4.11×e^-6×0.7=2.9×e^-6 (V)
so, I=2.9×e^{-6}÷30
I=9.6×e^{-8} A