1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nina [5.8K]
3 years ago
6

A police officer in a patrol car parked in a 70 km/h speed zone observes a passing automobile traveling at a slow, constant spee

d. Believing that the driver of the automobile might be intoxicated, the office starts his car, accelerates uniformly to 90 km/h in 8 s, and, maintaining a constant velocity of 90 km/h, overtakes the motorist 42 s after the automobile passed him. Knowing that 18 s elapsed before the officer began pursuing the motorist, determine
(a) the distance the officer traveled before overtaking the motorist,
(b) the motorist's speed.
Engineering
1 answer:
Ludmilka [50]3 years ago
3 0

Answer:

S = 0.5 km

velocity of motorist = 42.857 km/h

Explanation:

given data

speed  = 70 km/h

accelerates uniformly = 90 km/h

time = 8 s

overtakes motorist =  42 s

solution

we know  initial velocity u1 of police = 0

final velocity u2 = 90 km/h = 25 mps

we apply here equation of motion

u2 = u1 + at  

so acceleration a will be

a = \frac{25-0}{8}

a = 3.125  m/s²

so

distance will be

S1 = 0.5 × a × t²

S1 = 100 m = 0.1 km

and

S2 = u2 ×  t

S2 = 25  × 16

S2 = 400 m = 0.4 km  

so total distance travel by police

S = S1 + S2

S = 0.1 + 0.4

S = 0.5 km

and

when motorist travel with  uniform velocity

than total time = 42 s

so velocity of motorist will be

velocity of motorist = \frac{S}{t}

velocity of motorist =  \frac{500}{42}  

velocity of motorist = 42.857 km/h

You might be interested in
Please write the following code in Python 3. Also please show all output(s) and share your code.
maksim [4K]

Answer:

sum2 = 0

counter = 0

lst = [65, 78, 21, 33]

while counter < len(lst):

   sum2 = sum2 + lst[counter]

   counter += 1

Explanation:

The counter variable is initialized to control the while loop and access the numbers in <em>lst</em>

While there are numbers in the <em>lst</em>,  loop through <em>lst</em>

Add the numbers in <em>lst</em> to the sum2

Increment <em>counter</em> by 1 after each iteration

6 0
3 years ago
Consider a N-channel enhancement MOSFET with VGS = 3V, Vt = 1 V, VDS = 10 V, and lambda =0 (channel length modulation parameter)
AveGali [126]

The current IDS is greater than 0 since the VGS has induced an inversion layer and the transistor is operating in the saturation region.

<u>Explanation:</u>

  • Since V_{ds} > V_{gs} - Vt because V_{gs} > Vt.
  • By the saturation region the MOSFET is operating.
  • A specific source voltage and gate of NMOS, the voltage get drained during the specific level, the drain voltage is rises beyond where there is no effect of current during saturated region.
  • MOSFET is a transistor which is a device of semiconductor vastly used for the electronic amplifying signals and switching in the devices of electronics.
  • The core of this is integrated circuit.
  • It is fabricated and designed in an individual chips due to tiny sizes.
7 0
3 years ago
A material has the following properties: Sut = 275 MPa and n = 0.40. Calculate its strength coefficient, K.
Tems11 [23]

Answer:

The strength coefficient is K = 591.87 MPa

Explanation:

We can calculate the strength coefficient using the equation that relates the tensile strength with the strain hardening index given by

S_{ut}=K \left(\cfrac ne \right)^n

where Sut is the tensile strength, K is the strength coefficient we need to find and n is the strain hardening index.

Solving for strength coefficient

From the strain hardening equation we can solve for K

K = \cfrac{S_{ut}}{\left(\cfrac ne \right)^n}

And we can replace values

K = \cfrac{275}{\left(\cfrac {0.4}e \right)^{0.4}}\\K=591.87

Thus we get that the strength coefficient is K = 591.87 MPa

6 0
3 years ago
The bulk modulus of a fluid if it undergoes a 1% change in volume when subjected to a pressure change of 10,000 psi is (a) 0.01
Veseljchak [2.6K]

Answer:

The required bulk modulus is 10^{6} Psi. So, the answer is non of these.

Explanation:

Change in pressure of the fluid is directly proportional to the volumetric strain. The constant of proportionality is the bulk modulus of the fluid.

Step1

Given:

Percentage change in volume is 1%.

Change in pressure is 10000 Psi.

Calculation:

Step2

Volumetric strain is calculated as follows:

\frac{\bigtriangleup V}{V}=\frac{1}{100}

\frac{\bigtriangleup V}{V}=0.01

Step3

Bulk modulus is calculated as follows:

\frac{\bigtriangleup V}{V}=0.01

\frac{\bigtriangleup V}{V}=0.01

10000=K\times0.01

K = 1000000 Psi.

Thus, the required bulk modulus is 10^{6} Psi.

3 0
3 years ago
How are the particles moving and and arranged in a gas?
alexandr402 [8]

Answer:

The particles in gas do not have any particular arrangement and there are very, very weak forces between them. So, the particles in a gas can easily move around and fill the shape of the container they are in, meaning they have no fixed shape.

7 0
3 years ago
Other questions:
  • The water requirement for Class H cement is 38% (i.e.,water (%) by weight of cement),whereas the water requirement for barite is
    7·1 answer
  • Initially when 1000.00 mL of water at 10oC are poured into a glass cylinder, the height of the water column is 1000.00 mm. The w
    6·1 answer
  • A reciprocating compressor takes a compresses it to 5 bar. Assuming that the compression is reversible and has an index, k, of 1
    14·1 answer
  • assume a five layer network model. There are 700 bytes of application data. There is a 20 bye header at the transport layer, a 2
    5·1 answer
  • What the phat is this
    14·2 answers
  • _____ are used to control the flow of electricity in a circuit.
    8·2 answers
  • The hypotenuse of a 45° right triangle is
    5·1 answer
  • At what distance from the Earth’s surface is a 10,000 kg satellite if its potential energy is equal to –5.58 x 1011 J? (choose t
    5·1 answer
  • Steam at 75 kPa and 8 percent quality is contained in a spring-loaded piston–cylinder device, as shown in Figure, with an initia
    6·1 answer
  • when discussing valve train components, technician a says stamped rocker arms are very strong and may be used in high-horsepower
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!