Answer:
bts biot bts biot jungkukkk
jungkukkkbiot
Explanation:
bts biot bts biot jungkukkk
jungkukkkbiot
Answer:
Speed of aircraft ; (V_1) = 83.9 m/s
Explanation:
The height at which aircraft is flying = 3000 m
The differential pressure = 3200 N/m²
From the table i attached, the density of air at 3000 m altitude is; ρ = 0.909 kg/m3
Now, we will solve this question under the assumption that the air flow is steady, incompressible and irrotational with negligible frictional and wind effects.
Thus, let's apply the Bernoulli equation :
P1/ρg + (V_1)²/2g + z1 = P2/ρg + (V_2)²/2g + z2
Now, neglecting head difference due to high altitude i.e ( z1=z2 ) and V2 =0 at stagnation point.
We'll obtain ;
P1/ρg + (V_1)²/2g = P2/ρg
Let's make V_1 the subject;
(V_1)² = 2(P1 - P2)/ρ
(V_1) = √(2(P1 - P2)/ρ)
P1 - P2 is the differential pressure and has a value of 3200 N/m² from the question
Thus,
(V_1) = √(2 x 3200)/0.909)
(V_1) = 83.9 m/s
Answer:
The answer to the question is
The heat transferred in the process is -274.645 kJ
Explanation:
To solve the question, we list out the variables thus
R-134a = Tetrafluoroethane
Intitial Temperaturte t₁ = 100 °C
Initial pressure = 3.5 bar = 350 kPa
For closed system we have m₁ = m₂ = m
ΔU = m×(u₂ - u₁) = ₁Q₂ -₁W₂
For constant pressure process we have
Work done = W =
= P×ΔV = P × (V₂ - V₁) = P×m×(v₂ - v₁)
From the tables we have
State 1 we have h₁ = (490.48 +489.52)/2 = 490 kJ/kg
State 2 gives h₂ = 206.75 + 0.75 × 194.57= 352.6775 kJ/kg
Therefore Q₁₂ = m×(u₂ - u₁) + W₁₂ = m × (u₂ - u₁) + P×m×(v₂ - v₁)
= m×(h₂ - h₁) = 2.0 kg × (352.6775 kJ/kg - 490 kJ/kg) =-274.645 kJ
Answer: True
Explanation: Ceramics have the property that when the band gap present between the atoms are larger than the light energy then the tend to become opaque because the light scattering is caused . They also show the property of being translucent when there are chances of the light to get a path through the surface of ceramic so they get the light at some parts e.g.porcelain .Therefore the statement given is true that ceramics can be optically opaque or semi-transparent(translucent).
Answer: So you are dealing with maximum and minimum weights and you want to know what MINIMUM number of supporting strands for this block and tackle system are needed I believe. If so you are dealing with economic imbalances Though we are not worrying about money Right? Right we need physics which Physics study matter and how it moves You would need 8 STRANDS
Explanation: Step By Step