Answer: see figure attached and explanation below.
Explanation:
1) Chemical equation (given):
Fe + CuCl₂ → Cu + FeCl₂
2) ΔHf reactants: -256 kJ/mol (given)
3) ΔHf products: - 321 kJ/mol (given)
4) ΔH reaction = ΔHf products - ΔHf reactants = - 321 kJ/mol - (- 256 kJ/mol) = - 65 kJ/mol
5) Conclusion:
i) Since ΔHf of products is less (more negative) than ΔHf of reactants, the reaction is exhotermic: the reaction released energy, which is the reason why the products content less potential energy than the reactants.
ii) Then, the energy diagram is the typical one of an exothermic reaction: the products start a certain potential energy level, the energy incrases until reaching the activation energy (the energy barrier to form the activated complex) and then energy decreases until a level below the energy of the reactants.
iii) See the attached figure with such kind of diagram showing the products at a lower level than the reactans
Full electron configuration of barium: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 6s2
Initial Conditions:
Volume= v1= 417 cm³
Temperature= T1 = 278 K
Final Conditions:
Temperature= T2 = 231K
Volume = v2 =?
Use the general gas equation;
P1*v1/T1 = P2*v2/T2
As, the temperature is constant;
So,
v1/T1 = v2/T2
417/278 = v2/231
v2= 346.5 cm³
No i think they can not be
Answer:
Looking at the inside of the bowl
Explanation:
The curvature of the bowl would likely focus the light to a single point or area above it. This higher intensity area would be more dangerous to look at.