Answer: option d. all of the above.
Explanation:
A mineral is an element or a inorganic compound that existes in nature as solid cristals; usually combined with other minerals in ores.
Some examples of minerals, among many, are titania, wich is TiO2, zirconia, which is ZrO2, silica, which is SiO2, gold, Au, silver, Ag.
As you see the definition and examples given meet the whole features included in the stament: a. the have a chemical formula, b they occur naturally, and c.have a characteristic internal structure (that is the way how the atoms are arranged in the specifi cristal).
Answer:
Mass = 55.52 g
Explanation:
Given data:
Number of atoms of Li = 4.81×10²⁴ atom
Number of grams = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
For example,
1.008 g of hydrogen = 1 mole = 6.022 × 10²³ atoms of hydrogen
For Li:
4.81×10²⁴ atom × 1 mol / 6.022 × 10²³ atom
8 moles
Mass in gram:
Mass = number of moles × molar mass
Mass = 8 mol × 6.94 g/mol
Mass = 55.52 g
Answer:
72.22 g
Explanation:
975 mL Mercury× 13.5 g/mL = 72.22 g
So to solve this you need to know Charles’s law which is: V1/T1=V2/T2. Where T1 and V1 is the initial volume and Temperature and V2 and T2 is the temperature and volume afterwards. So first plug in the numbers you are given. V1= 1.55L T1= 32C° V2= 755mL T2=?. Since your volumes are two different units you change 755mL to be in L so that would be 0.755 L. And since your temp isn’t in Kelvin you do 273+32= 305K°. You then would rearrange your equation to solve for T2 which is V2T1/V1. Then you plug in your numbers (0.755L)(305K)/1.55L. Then you solve and would be 148.5645161 —> 1.49 x 10^2 K
Answer:
the wavelength of radiation emitted is 
Explanation:
The energy of the Bohr's hydrogen atom can be expressed with the formula:

For n = 7:


For n = 4


The electron goes from the n = 7 to the n = 4, then :


Wavelength of the radiation emitted:

where;
hc = 1242 eV.nm

