You don't "turn" it into energy; petroleum HAS stored energy (chemical energy).However, you can turn it into ANOTHER TYPE OF ENERGY; usually this is done by burning the petroleum, and using it to drive machinery.
Since burning fuels is wasteful (the efficiency is limited, in theory, to the Carnot efficiency of a heat engine), other options are being explored, such as chemical reactions in a fuel cell. But such technology is not yet used on a large scale.
Bef2 is the compound that has the most covalent character. Whichever element has the greatest electronegativity has the least difference and most covalent character.
Answer:
A. 3 x 10-12
Explanation:
Generally, the parts-per notation is used to represent very small concentration without any specific unit.
Parts per million is notated as 
Parts per billion is notated as 
Parts per trillion is notated as 
Hence, 3 parts per trillion will be written as 3 x 
The correct option is A.
D. Salt and water
Explanation:
Acid + Alkali -> Salt + water
<h3>
Answer:</h3>
0.424 J/g °C
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Chemistry</u>
<u>Thermochemistry</u>
Specific Heat Formula: q = mcΔT
- q is heat (in Joules)
- m is mass (in grams)
- c is specific heat (in J/g °C)
- ΔT is change in temperature
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] m = 38.8 g
[Given] q = 181 J
[Given] ΔT = 36.0 °C - 25.0 °C = 11.0 °C
[Solve] c
<u>Step 2: Solve for Specific Heat</u>
- Substitute in variables [Specific Heat Formula]: 181 J = (38.8 g)c(11.0 °C)
- Multiply: 181 J = (426.8 g °C)c
- [Division Property of Equality] Isolate <em>c</em>: 0.424086 J/g °C = c
- Rewrite: c = 0.424086 J/g °C
<u>Step 3: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.424086 J/g °C ≈ 0.424 J/g °C