Answer:
-12162.47 joules (or -12000 joules when accounting for significant figures)
Explanation (btw I used 1 cal as 4.184 joules because SI units are better):
q = m c delta T
q = (70.9) (4.184) (25 - 66)
q = (70.9) (4.184) (-41)
q = -12162.47 joules
Answer:
5.8μg
Explanation:
According to the rate or decay law:
N/N₀ = exp(-λt)------------------------------- (1)
Where N = Current quantity, μg
N₀ = Original quantity, μg
λ= Decay constant day⁻¹
t = time in days
Since the half life is 4.5 days, we can calculate the λ from (1) by substituting N/N₀ = 0.5
0.5 = exp (-4.5λ)
ln 0.5 = -4.5λ
-0.6931 = -4.5λ
λ = -0.6931 /-4.5
=0.1540 day⁻¹
Substituting into (1) we have :
N/N₀ = exp(-0.154t)----------------------------- (2)
To receive 5.0 μg of the nuclide with a delivery time of 24 hours or 1 day:
N = 5.0 μg
N₀ = Unknown
t = 1 day
Substituting into (2) we have
[5/N₀] = exp (-0.154 x 1)
5/N₀ = 0.8572
N₀ = 5/0.8572
= 5.8329μg
≈ 5.8μg
The Chemist must order 5.8μg of 47-CaCO3
Hey there! A simple explanation is below.
Answer:
D) is a single phase homogeneous mixture.
Explanation:
A solution is a form of homogenous combination made up of two or more components in chemistry. A solute is a material that is dissolved in another material, known as a solvent, in such a combination. The mixing of a solution takes place at a scale where the effects of chemical polarity are present, resulting in solvation-specific interactions. In most cases, the solution is in the condition of the solvent, because it is most common in the mixture.