Answer:
18 O, 17 O, and 16 O
Explanation:
three naturally stable isotopes
A. The radioactive decay equation is N = N0
where T is the
half-life (5730 years), N0 is the number of atoms at time t = 0 and
N is the number at time t.
Rewriting this as:
(N/N0) = 
Since N = (1/8) N0 and
substituting known values:
1/8 = 
Taking ln of both
sides:
ln(1/8)= -ln(2)*t/5730
t = - 5730 * ln(1/8) /
ln (2)
t = 17,190 years
The tree was cut down 17,190
years ago.
B. N0 = 1,500,000 carbon-14 atoms
Since N = (1/8) N0
N = 187,500 carbon
atoms left
Ionic would be the answer
i dont know gjchhhhhhhhhhhhhhhhhhhhhhhhh
<span> the first ionization </span>energy<span> of an element is the </span>energy<span> needed to</span>remove<span> the outermost, or highest </span>energy<span>, </span>electron<span> from a neutral </span>atom<span> in the gas phase.</span>