The changes in the energy law of conservation of energy is Potential energy is converted to kinetic energy. Kinetic energy is converted into potential energy.
<h3>What is the law of conservation of energy?</h3>
Law of conservation of energy says that energy can neither be created nor destroyed, it just transformed from one form to another.
The energies are kinetic, potential, mechanical, gravitational, electrical, etc.
Thus, the changes in the energy law of conservation of energy is Potential energy is converted to kinetic energy. Kinetic energy is converted into potential energy.
Learn more about law of conservation of energy
brainly.com/question/20971995
#SPJ4
Answer:
gnzl8303
gnzl8303vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Explanation:
most metals conduct electricity and are very dull to the look. most metals are toxic if eaten and are hard.
aluminum is a type of metal they is softer than the opther and conducts eletricty like a boss.
nickel on the opther hand is also a metal but does not conduct a lot of electricy.
metals can be bent and others can break,
Answer: The order with respect to
is 1.
Explanation:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

k= rate constant
x = order with respect to 
y = order with respect to A
n = x+y = Total order
From trial 1:
(1)
From trial 2:
(2)
Dividing 2 by 1 :
therefore x= 1
Thus order with respect to
is 1.
Answer:
c. CH4 < NH3 because the NH bond is more polar than the CH bond.
Explanation:
Actually, the electronegativity difference between carbon and hydrogen is just about 0.4. This meager difference in electronegativity corresponds to a nonpolar bond between the two atoms.
However, the electronegativity difference between nitrogen and hydrogen is about 0.9. This larger electronegativity difference corresponds to the existence of a polar covalent bond between the two atoms.
Hence the N-H bond is significantly polar unlike the C-H bond. This implies that CH4 molecules are only held together by weak dispersion forces while NH3 molecules are held together by stronger dipole-dipole interactions and hydrogen bonds.