Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at
speed is

The distance traveled by the motorcycle after Δt (seconds) at
speed and acceleration of a = 8 m/s2 is


We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:





(b)


If it increased its speed steadily at a constant rate, then the average speed for the minute was
(1/2)(10m/s + 20m/s) = 15 m/s .
Rolling at an average speed of 15 m/s for 1 minute (60 seconds), it travels
(15 m/s) (60 sec) = 900 meters
Each station can detect how far away the epicenter was. So each station basically has a circle made of possible epicenters. When you have three, you narrow it down to one, final point.
Answer:
An object which experiences either a change in the magnitude or the direction of the velocity vector can be said to be accelerating. This explains why an object moving in a circle at constant speed can be said to accelerate - the direction of the velocity changes.
if a car turns a corner at constant speed, it is accelerating because its direction is changing. The quicker you turn, the greater the acceleration. So there is an acceleration when velocity changes either in magnitude (an increase or decrease in speed) or in direction, or both.
Explanation:
Answer:
In both cases, energy will move from an area of higher temperature to an area of lower temperature. So, the energy from room-temperature air will move into the cold water, which warms the water.
Explanation: