Answer:
1.66 kg
Explanation:
Given that a 0.83-kg block is hung from and stretches a spring that is attached to the ceiling.
From Hook's law
F = Ke
But F = mg
Substitute mg for force in the Hook's law
Mg = ke
0.83 × 9.8 = ke
Make K the subject of formula
8.134 = Ke
K = 8.134 /e
Given that a second block is attached to the first one, and the amount that the spring stretches from its unstretched length triples.
That is
(0.83 + M) × 9.8 = K (3e)
Substitutes K into the above equation
(0.83 + M) × 9.8 = 8.134 / e (3e)
The e will cancel out
(0.83 + M) × 9.8 = 24.402
0.83 + M = 24.402/9.8
0.83 + M = 2.49
M = 2.49 - 0.83
M = 1.66 kg
Therefore, the mass of the second block is 1.66kg
Swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
To find more, we have to study about the spectroscopic methods.
<h3>
What is homonuclear decoupling and broadband excitation?</h3>
- A thorough understanding of the evolution of spin systems during these pulses is crucial for many of these applications since it not only helps to describe how procedures work but also makes new methodologies possible.
- Broadband inversion, refocusing, and excitation employing these pulses are some of the most popular applications in NMR, ESR, MRI, and in vivo MRS in magnetic resonance spectroscopy.
- A generic expression for chirped pulses will be presented in this study, along with numerical methods for calculating the spin dynamics during chirped pulses using solutions along with extensive examples.
Thus, we can conclude that, the swept-frequency pulses have found use in a variety of fields, including spectroscopic methods where effective spin control is necessary.
Learn more about the broadband excitation here:
brainly.com/question/19204110
#SPJ4
By Newton's second law, the net force on the object is
∑ <em>F</em> = <em>T</em> - <em>mg</em> = - <em>ma</em>
where
• <em>T</em> = 25 N, the tension in the string
• <em>m</em> is the mass of the object
• <em>g</em> = 9.8 m/s², the acceleration due to gravity
• <em>a</em> = 2.0 m/s², the acceleration of the elevator-object system
Solve for <em>m</em> :
25 N - <em>m</em> (9.8 m/s²) = - <em>m</em> (2.0 m/s²)
==> <em>m</em> = (25 N) / (9.8 m/s² - 2.0 m/s²) ≈ 3.2 kg
Choice-a is a very rubbery, imprecise, ambiguous, slippery statement. But it's probably less wrong than any of the other choices on the list.
Electromagnetic waves are waves consists of waves of the electromagnetic field, propagating through the space, carrying electromagnetic radiant energy. Examples includes radio waves, microwaves, infrared, light, ultraviolet, X-rays, and gamma rays. All of these waves form part of the electromagnetic spectrum.
In order from highest to lowest energy, the sections of the EM spectrum are named: gamma rays, X-rays, ultraviolet radiation, visible light, infrared radiation, and radio waves.
Learn more about electromagnetic waves:
brainly.com/question/14015797