Isobaric transition, first law: <span>H=ΔU+w</span>
for a gas expansion: <span>w=<span>P<span>ext</span></span>∗ΔV</span>
to convert to joules, you need the gas constants.
R = 0.08206 L atm/mol*K, R=8.314 J/mol*K
<span>w=<span>P<span>ext</span></span>∗ΔV∗<span><span>8.314 J/mol∗K</span><span>0.08206 L atm/mol∗K</span></span></span>
<span>ΔU=ΔH−[<span>P<span>ext</span></span>∗ΔV∗<span><span>8.314 J/mol∗K</span><span>0.08206 L atm/mol∗K</span></span>]</span>
<span>ΔU=−75000 J−[(43.0atm)∗(2−5)L∗<span><span>8.314 J</span><span>0.08206 L atm</span></span>]</span>
Then you need to convert to kJ.
by the way U=E, internal energy.
0.250 L*3M=0.250 L*3mol/L= 0.750 mol
Answer: If you smell a dusty or burning smell the first few times you turn on your heat, it’s most likely dust and dirt that’s settled on components inside your heating system throughout the summer. As you fire up the heat, those dust particles burn away, producing a weird burnt/dusty smell.
Explanation: please mark brainlyest
Hey there!:
Number of moles:
Molar Mass Al = 26.98 g/mol
n = mass / molar mass
n = 9.0 / 26.98
n = 0.3336 moles of Al
Given the reaction :
2 Al + Fe2O3 = Al2O3 + 2 Fe
From the equation, 2 moles of Al give off 849 kJ of heat :
Actual heat given off :
0.3336 / 2 * 849 =
0.3336 / 1698 = 1.4*10² Kj
Hope that helps!