50 g of liquid X at 10 Celcius and 200 g of liquid Y
mx*cx*(t-tx)+my*cy*(t-ty)=0
cx/cy = - my*(t-ty) : mx*(t-tx) = (my/mx) * (ty - t) / (t-tx)
cx/cy = 200/50*(40-15)/(15-10) = 20
cx/cy = 20
The value of the coefficient of kinetic friction between the wagon and inclined surface is 0.78.
<h3>
Coefficient of the kinetic friction</h3>
The value of coefficient of kinetic friction is calculated as follows;
F - Ff = ma
F - μmgcosθ = ma
where;
- F is applied force
- μ is coefficient of kinetic friction
- m is mass of the wagon
- a is acceleration of the wagon
182 - μ(20 x 9.8 x cos30) = 20(2.5)
182 - 169.74μ = 50
182 - 50 = 169.74μ
132 = 169.74μ
μ = 132/169.74
μ = 0.78
Thus, the value of the coefficient of kinetic friction between the wagon and inclined surface is 0.78.
Learn more about coefficient of friction here: brainly.com/question/20241845
Answer:
In water, the particles are much closer together, and they can quickly transmit vibration energy from one particle to the next.
A water wave is an example of a transverse wave. As water particles move up and down, the water wave itself appears to move to the right or left.
Answer:
a) 19.4 m/s
b) 19 m/s
Explanation:
a) In the given question,
the potential energy at the initial point = Ui = 0
the potential energy at the final point = Uf = mgh
the kinetic energy at the initial point = Ki = 1/2 mv₀².
the kinetic energy at the final point = Kf = 0
work done by air= Ea= fh = 0.262 N
Now, using the law of conservation of energy
initial energy= final energy
Ki +Ui = Kf + Uf +Ea
1/2 mv₀² + 0 = 0 + mgh + fh
1/2 mv₀² = mgh + fh
h = v₀²/ 2g (1 +f/w)
calculate m
m= w/g = 5.29 /9.8
= 0.54 kg
h = 20 ²/ (2 x9.80) x (1 0.265/5.29)
h = 19.4 m.
b) 1/2 mv² + 2fh = 1/2 mv₀²
Vg = 19 m/s
Answer:
A generator turns rotary motion into electricity. It is basically the inverse of a motor. Generally a transformer changes one voltage into another based on the number of conductor windings on each side. There are two sets of windings called the “primary” and the “secondary”.
Explanation: