Answer:
Fighting
Explanation:
Fighting with someone like punch for punch can make the person bleed which an injury to the guy who you fought with and you can be arrested if the parents file a complain at the police station
The hydrogen fusion process will begin after the protostar reaches a temperature of 10 million degrees kelvin, and it will then turn into a stable star.
<h3>How does a protostar become a stable star?</h3>
The interstellar medium can sometimes be gathered into a large nebula, which is a cloud of gas and dust. A nebula can span a number of light years. These nebulae are where gas and dust can combine to produce stars. Until a star can combine hydrogen into helium, it cannot be considered a star. They are referred to as protostars before then. As gravity starts to gather the gases into a ball, a protostar is created. Accrution is the term for this procedure.
Gravitational energy starts to heat the gasses as gravity draws them into the ball's core, which causes the gasses to radiate radiation. Radiation initially just dissipates into space. However, much of the radiation is retained inside the protostar as it draws in stuff and becomes denser, which causes the protostar to heat up even more quickly.
The hydrogen fusion process will begin after the protostar reaches a temperature of 10 million degrees kelvin, and it will then turn into a star.
Learn more about a protostar here:
brainly.com/question/12534975
#SPJ4
Answer:
Yes
Explanation:
The core of an electromagnet serves to stabilize the magnetic field created by the wire. The thicker the core, the more metal there is to amplify the current. Therefore, a thicker core does make an electromagnet stronger. Hope this helps!
The process of <u>scientific method</u> involves making hypotheses , driving predictions from them as logical consequences , and then carrying out experiments or empirical observations based on those predictions. A hypotheses is a conjecture , based on knowledge obtained while seeking answers to the questions.
The main formula to be used here is
Force = (mass) x (acceleration).
We'll get to work in just a second. But first, I must confess to you that I see
two things happening here, and I only know how to handle one of them. So
my answer will be incomplete, but I believe it will be more reliable than the
first answer that was previously offered here.
On the <u>right</u> side ... where the 2 kg and the 3 kg are hanging over the same
pulley, those weights are not balanced, so the 3 kg will pull the 2kg down, with
some acceleration. I don't know what to do with that, because . . .
At the <em>same time</em>, both of those will be pulled <u>up</u> by the 10 kg on the other side
of the upper pulley.
I think I can handle the 10 kg, and work out the acceleration that IT has.
Let's look at only the forces on the 10 kg:
-- The force of gravity is pulling it down, with the whatever the weight of 10 kg is.
-- At the same time, the rope is pulling it UP, with whatever the weight of 5 kg is ...
that's the weight of the two smaller blocks on the other end of the rope.
So, the net force on the 10 kg is the weight of (10 - 5) = 5 kg, downward.
The weight of 5 kg is (mass) x (gravity) = (5 x 9.8) = 49 newtons.
The acceleration of 10 kg, with 49 newtons of force on it, is
Acceleration = (force) / (mass) = 49/10 = <em>4.9 meters per second²</em>