The spectrum of light from the moon should very strongly resemble the spectrum of sunlight. The reason is that any light from the moon started out from the sun. Any difference in their spectra is only due to the moon absorbing more of some wavelengths and less of others. But since the moon appears colorless gray, we don't expect any particular colors to be strongly absorbed, otherwise the moon would look to be the colors of the light that's left.
The buoyant force on any object acts in the direction opposite to the force of gravity. <em>(A)</em>
Answer:
d. 2 hours
Explanation:
because if it travels 100 miles per hour in 1 hour it would travel 200 miles in 2 hours and so fourth.
if it moves 7m/s, that means every second it goes 7m. Now we just multiply by the time (20 seconds) and end up with 140m.
The complete observation about adding bulb 3 is the brightness of the bulbs has to do with power which considers both the voltage and the current: less voltage x less current = dimmer bulbs. In circuit A, the voltage is divided across the resistors and the current decreases as resistance increases. In circuit B, the voltage is the same in each parallel section of the circuit and the current through that section of the circuit only depends on the resistor in that section.
<h3>What is power of the circuit?</h3>
The power of the bulb or any resistor is equal to the product of voltage and current flowing through it.
P = VI
Circuit A has bulbs in series while the circuit B has bulbs in parallel.
When bulb 3 added to circuit A, the brightness of all the bulbs dimmed but when bulb 3 (R3) added to circuit B, nothing changed in the brightness of the bulb.
The brightness is depended on the power of the circuit. When both the voltage and current are less, the bulb will be dimmed. In circuit A, series resistors divide the voltage across them. In circuit B, voltage is equal for all the resistors.
Thus, the last option is correct.
Learn more about power.
brainly.com/question/2933971
#SPJ1