Answer:
Explanation:
Different measuring instruments have different level of precision . For example , our usual scale can measure upto 1 mm. Callipers can measure upto .1 mm. screw gauge can measure upto .01 mm.etc The deeper it can measure , the more precise it is. Hence screw gauge is most precise among the three.
On this basis we can say that , new caliper is less precise than old one.
Accuracy tells us about our result , how close our result is to the true measurement. It is dependent on the manner in which we take reading , So measuring methods , rather than measuring instruments , decide the accuracy of our result.
Hence we can say that the new caliper is less precise only.
Answer:
The distance covered is 40 m and the displacement is 31,6m.
Explanation:
The distance covered is the sum of the two distances (10+30). The displacement is equal to the distance of the hipotenusa of the triangle that the two distances (10 m to north and 30m to east) create. Using the Pythagoras theorem the displacent is equal to the Square root of (30^2 +10^2) .
Answer:
C. 21 Joules
Explanation:
We apply the formula to calculate the potential energy (Ep):
Ep=m*g*h
Where:
Ep : potential energy in Joules (J)
m :mass in kilograms (kg)
g acceleration due to gravity (m/s²)
h: height in meters (m)
Calculation of the height (h)
Ep = m*g*h
7 = (1.5 )*(9.8) *(h
)
7 = (14.7) (h
)
h = 7 / (14.7)
h= 0.476 m
Gravitational potential energy of the second object
Ep = m*g*h
Ep = (4.5 )*(9.8) *(0.476
)
Ep = (4.5 )*(9.8) *(0.476
)
Ep = 21 J
We have: K.E. = mv² / 2
here, m = 4 Kg
v = 9 m/s
Substitute their values into the expression:
K.E. = (4)(9)² / 2
K.E. = (4)(81) / 2
K.E. = 324 / 2
K.E. = 162 Joules
In short, Your Answer would be 162 J
Hope this helps!
Answer:
(b) the point charge is moved outside the sphere
Explanation:
Gauss' Law states that the electric flux of a closed surface is equal to the enclosed charge divided by permittivity of the medium.

According to this law, any charge outside the surface has no effect at all. Therefore (a) is not correct.
If the point charge is moved off the center, the points on the surface close to the charge will have higher flux and the points further away from the charge will have lesser flux. But as a result, the total flux will not change, because the enclosed charge is the same.
Therefore, (c) and (d) is not correct, because the enclosed charge is unchanged.