From Carnot's theorem, for any engine working between these two temperatures:
efficiency <= (1-tc/th) * 100
Given: tc = 300k (from question assuming it is not 5300 as it seems)
For a, th = 900k, efficiency = (1-300/900) = 70%
For b, th = 500k, efficiency = (1-300/500) = 40%
For c, th = 375k, efficiency = (1-300/375) = 20%
Hence in case of a and b, efficiency claimed is lesser than efficiency calculated, which is valid case and in case of c, however efficiency claimed is greater which is invalid.

Those reaction in which two or more substances combine to form a one new substance are called Combination reaction
In this reaction, We can add :
- Two or more elements can combine to form a compound.
- Two or more compounds can combine to from a one new compound.
- An element and a compound can combine to form a new compound.


In this, Hydrogen is an element and Oxygen is another element. Both are combined to form compound 'Hydrogen oxide'. Hydrogen oxide is commonly known as water.
Use this site is better https://www.cymath.com/
Answer:
317.22
Explanation:
Given
Circular platform rotates ccw 93.1kg, radius 1.93 m, 0.945 rad/s
You 69.7kg, cw 1.01m/s, at r
Poodle 20.2 kg, cw 1.01/2 m/s, at r/2
Mutt 17.7 kg, 3r/4
You
Relative
ω = v/r
= 1.01/1.93
= 0.522
Actual
ω = 0.945 - 0.522
= 0.42
I = mr^2
= 69.7*1.93^2
= 259.6
L = Iω
= 259.6*0.42
= 109.4
Poodle
Relative
ω = (1.01/2)/(1.93/2)
= 0.5233
Actual
ω = 0.945- 0.5233
= 0.4217
I = m(r/2)^2
= 20.2*(1.93/2)^2
= 18.81
L = Iω
= 18.81*0.4217
= 7.93
Mutt
Actual
ω = 0.945
I = m(3r/4)^2
= 17.7(3*1.93/4)^2
= 37.08
L = Iω
= 37.08*0.945
= 35.04
Disk
I = mr^2/2
= 93.1(1.93)^2/2
= 173.39
L = Iω
= 173.39*0.945
= 163.85
Total
L = 109.4+ 7.93+ 36.04+ 163.85
= 317.22 kg m^2/s
Answer:
The change in the internal energy of the gas 1,595 J
Explanation:
The first law of thermodynamics establishes that in an isolated system energy is neither created nor destroyed, but undergoes transformations; If mechanical work is applied to a system, its internal energy varies; If the system is not isolated, part of the energy is transformed into heat that can leave or enter the system; and finally an isolated system is an adiabatic system (heat can neither enter nor exit, so no heat transfer takes place.)
This is summarized in the expression:
ΔU= Q - W
where the heat absorbed and the work done by the system on the environment are considered positive.
Taking these considerations into account, in this case:
- Q= 500 cal= 2,092 J (being 1 cal=4.184 J)
Replacing:
ΔU= 2,092 J - 500 J
ΔU= 1,592 J whose closest answer is 1,595 J
<u><em>The change in the internal energy of the gas 1,595 J
</em></u>