Answer : The temperature of liquid is, 369.9 K
Explanation :
The Clausius- Clapeyron equation is :
where,
= vapor pressure of liquid at 373 K = 681 torr
= vapor pressure of liquid at normal boiling point = 760 torr
= temperature of liquid = ?
= normal boiling point of liquid = 373 K
= heat of vaporization = 40.7 kJ/mole = 40700 J/mole
R = universal constant = 8.314 J/K.mole
Now put all the given values in the above formula, we get:
Hence, the temperature of liquid is, 369.9 K
Answer:
85.34g of NH3
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
N2 + 3H2 —> 2NH3
Step 2:
Determination of the number of moles of NH3 produced by the reaction of 2.51 moles of N2. This is illustrated below:
From the balanced equation above,
1 mole of N2 reacted to produce 2 moles of NH3.
Therefore, 2.51 moles of N2 will react to produce = (2.51 x 2)/1 = 5.02 moles of NH3.
Therefore, 5.02 moles of NH3 is produced from the reaction.
Step 3:
Conversion of 5.02 moles of NH3 to grams. This is illustrated below:
Molar mass of NH3 = 14 + (3x1) = 17g/mol
Number of mole of NH3 = 5.02 moles
Mass of NH3 =..?
Mass = mole x molar Mass
Mass of NH3 = 5.02 x 17
Mass of NH3 = 85.34g
Therefore, 85.34g of NH3 is produced.
Answer:
41 mL
Explanation:
Given data:
Milliliter of HCl required = ?
Molarity of HCl solution = 4.25 M
Mass of CaCO₃ = 8.75 g
Solution:
Chemical equation:
2HCl + CaCO₃ → CaCl₂ + CO₂ + H₂O
Number of moles of CaCO₃:
Number of moles = mass/molar mass
Number of moles = 8.75 g / 100.1 g/mol
Number of moles = 0.087 g /mol
Now we will compare the moles of CaCO₃ with HCl.
CaCO₃ : HCl
1 : 2
0.087 : 2/1×0.087 = 0.174 mol
Volume of HCl:
Molarity = number of moles / volume in L
4.25 M = 0.174 mol / volume in L
Volume in L = 0.174 mol /4.25 M
Volume in L = 0.041 L
Volume in mL:
0.041 L×1000 mL/ 1L
41 mL
Atomic number - 18
1s2,2s2,sp6,3s2,3p6
noble configuration is [Ne]3s2,3p6