C₄H₉OH + HBr = C₄H₉Br + H2O
Δmole of alcohol gives 1 mole of bromobutanol
HBr is in excess, so the yield of the product is limited by the alcohol
Wt. of 1 butanol = 18
Molar mass of the butanol = 74.12 g/mole
Moles of the alcohol = 1/74.12 = 0.01349 moles
So, moles of bromobutane = 0.01349 moles
Molar mass of C₄H₉Br = 137.018 g/moles
So, theoretical mass of bromobutane is = 0.01349 × 137.0.18
= 1.85 g
The following are the answers to the different questions:
<span>The four rows of data below show the boiling points for a solution with no solute, sucrose (C12H22O11), sodium chloride (NaCl), and calcium chloride (CaCl2) (not in that order). Which boiling point corresponds to calcium chloride?
A. 101.53° C
Which of the following solutions will have the lowest freezing point?
D. 1.0 mol/kg magnesium fluoride (MgF2)
Which of the following compounds will be most effective in melting the ice on the roads when the air temperature is below zero?
A. sodium iodide (NaI)
Four different solutions have the following vapor pressures at 100°C. Which solution will have the greatest boiling point?
B. 96.3 kPa
Four different solutions have the following boiling points. Which boiling point corresponds to a solution with the lowest freezing point?
D. 108.1°C</span>
Answer:
The correct option is False
Explanation:
Ionization energy is the <em>minimum amount of energy required to remove a valence electron from one mole of an atom in it's gaseous state</em>. Ionization energy requires the removal of an electron from a gaseous atom. The definition in the question is that of electronegativity.
Electronegativity is the <u>ability of an atom to attract electrons towards itself in a chemical bond.</u>
Answer:
0.0250 g.
Explanation:
∵ no. of moles (n) = mass / molar mass.
<em>∴ mass of Vitamine C = (n)(molar mass)</em> = (0.000142 mol)(176.12 g/mol) = 0.02501 g = <em>0.0250 g. "three significant figures"</em>
Answer:
wla dyan ang sagut ehh baka mali yan