So the solution inside doesn't splash
Hey there!:
Molar mass H3PO4 = <span>97.9952 g/mol
Atomic Masses :
H = </span><span>1.00794 a.m.u
</span>P = <span>30.973762 a.m.u
</span>O = 15.9994 a.m.u<span>
H % = [ ( 1.00794 * 3 ) / </span> 97.9952 ] * 100
H% = <span>3.0857 %
P % = [ ( </span>30.973762 * 1 ) / 97.9952 ] * 100
P% = <span>31.6074 %
O % = [ ( </span>15.9994 * 4 ) / 97.9952 ] * 100
O% = <span>65.3069 %
Hope this helps!</span>
Hello!
<span>
You'll need to react
7,5 moles of Sodium with sulfuric acid to produce 3.75 moles of sodium sulfate
</span>
First of all, you need to balance the reaction. The balanced reaction is shown below (ensuring that the Law of Conservation of Mass is met on both sides):
2Na + H₂SO₄ → Na₂SO₄ + H₂
Now, all that you have to do is to use molar equivalences in this reaction applying the coefficients to calculate the moles of Sodium that you'll need:
Have a nice day!
I think it might be D or B
And my other two might be A or C
I believe your answer Is C. An ammonia molecule has a trigonometrical pyramidal shape. Figure C has a <span>has a trigonometrical pyramidal shape.</span>
I hope I help