Answer: 
Explanation: Because barium is in Group 2, it forms ions with a charge of +2. Fluorine, in Group 17, form ions with a charge of -1. Cross the charges to get the subscripts (Since Ba has a charge of +2, F has a subscript of 2. Because F has a charge of -1, Ba needs a subscript of 1). Therefore, a formula unit of the compound is
.
Answer:
True
Explanation:
The physical and chemical properties of a substance depend on the nature of intermolecular forces between its molecules. For instance, water has a high boiling point because of hydrogen bonding between water molecules. Liquid water is denser than ice because of the difference in the nature of hydrogen bonding in liquid water and ice.
3 moles of NaOH reacts with 1 mole of phosphoric acid.
<h3>What is the moles ratio of the NaOH and Phosphoric acid reaction?</h3>
The moles ratio of the reaction between NaOH and Phosphoric acid is given by the equation of the reaction below:

Based on the equation of the reaction, 3 moles of NaOH reacts with 1 mole of phosphoric acid.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1
Answer:
Chloroform is expected to boil at 333 K (60
).
Explanation:
For liquid-vapor equilibrium at 1 atm,
= 0.
We know,
, where T is temperature in kelvin scale.
Here both
and
are corresponding to vaporization process therefore T represents boiling point of chloroform.
So, ![0=(31.4\times 10^{3}\frac{J}{mol})-[T\times (94.2\frac{J}{mol.K})]](https://tex.z-dn.net/?f=0%3D%2831.4%5Ctimes%2010%5E%7B3%7D%5Cfrac%7BJ%7D%7Bmol%7D%29-%5BT%5Ctimes%20%2894.2%5Cfrac%7BJ%7D%7Bmol.K%7D%29%5D)
or, T = 333 K
So, at 333 K (60
) , chloroform is expected to boil.