The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz
Answer:
10 km/hr/s
Explanation:
The acceleration of an object is given by

where
v is the final velocity
u is the initial velocity
t is the time
For the car in this problem:
u = 0

t = 6 s
Substituting in the equation,

Answer:
109656.25 Nm
Explanation:
= Final angular velocity = 1.5 rad/s
= Initial angular velocity = 0
= Angular acceleration
t = Time taken = 6 s
m = Mass of disk = 29000 kg
r = Radius = 5.5 m

Torque is given by

The torque specifications must be 109656.25 Nm
Answer:
The answer is
<h2>84.9 kPa</h2>
Explanation:
Using Boyle's law to find the final pressure
That's

where
P1 is the initial pressure
P2 is the final pressure
V1 is the initial volume
V2 is the final volume
Since we are finding the final pressure

From the question
P1 = 115 kPa
V1 = 480 mL
V2 = 650 ml
So we have

We have the final answer as
<h3>84.9 kPa</h3>
Hope this helps you
Answer:
4.4 square meters = 47 square foot
Explanation:
We have
1 meter = 3.28084 foot
1 square meter = 3.28084 x 3.28084 square foot = 10.76 square foot
4.4 square meters = 4.4 x 10.76 = 47.36 square foot = 47 square foot
4.4 square meters = 47 square foot