The ratio of the turns to the voltage should be equal
i.e: 200/120 = t/12
so the secondary coil should have 20 turns
Answer:

Explanation:
Given,
Width of rectangular tank, b = 1 m
Length of the tank, l = 2 m
height of the tank, d = 1.5 m
Depth of gasoline on the tank, h = 1 m


The differential form with the acceleration


acceleration in z-direction = 0 m/s²
g = 9.8 m/s²
a_y is the horizontal acceleration of the gasoline.



Hence, Horizontal acceleration of the gasoline before gasoline would spill is equal to 4.9 m/s²
Answer:
Vf = 15 m/s
Explanation:
First we consider the upward motion of ball to find the height reached by the ball. Using 3rd equation of motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = -9.8 m/s² (negative sign for upward motion)
h = height =?
Vf = Final Velocity = 0 m/s (Since, ball momentarily stops at highest point)
Vi = Initial Velocity = 15 m/s
Therefore,
2(-9.8 m/s²)h = (0 m/s)² - (15 m/s)²
h = (-225 m²/s²)/(-19.6 m/s²)
h = 11.47 m
Now, we consider downward motion:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height = 11.47 m
Vf = Final Velocity = ?
Vi = Initial Velocity = 0 m/s
Therefore,
2(9.8 m/s²)(11.47 m) = Vf² - (0 m/s)²
Vf = √(224.812 m²/s²)
<u>Vf = 15 m/s</u>
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
Answer:
The electric force between them is 878.9 N
Explanation:
Given:
Identical charge
C
Separation between two charges
m
For finding the electrical force,
According to the coulomb's law

Here, force between two balloons are repulsive because both charges are same.
Where 

N
Therefore, the electric force between them is 878.9 N