Answer:
B. 1.65 L
Explanation:
Step 1: Write the balanced equation
2 SO₂(g) + O₂(g) ⇒ 2 SO₃(g)
Step 2: Calculate the moles of SO₂
The pressure of the gas is 1.20 atm and the temperature 25 °C (298 K). We can calculate the moles using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.20 atm × 1.50 L / (0.0821 atm.L/mol.K) × 298 K = 0.0736 mol
Step 3: Calculate the moles of SO₃ produced
0.0736 mol SO₂ × 2 mol SO₃/2 mol SO₂ = 0.0736 mol SO₃
Step 4: Calculate the volume occupied by 0.0736 moles of SO₃ at STP
At STP, 1 mole of an ideal gas occupies 22.4 L.
0.0736 mol × 22.4 L/1 mol = 1.65 L
Answer:
3.329 g
Explanation:
First you need to determine the molar mass of H2S which is 34.1 g/mol.
With that we know that to find the moles of H2S we just divide the mass of sample with the molar mass.
3.54 g / 34.1 g/mol = 0.103812317 mol of H2S
This means that there is also 0.103812317 mol of sulfur since there is 1 mole of sulfur per 1 mole of H2S.
The molar mass of sulfur is 32.065 g/mol and to find the mass of sulfur you need to multiply the molar mass with the moles of the compound.
0.103812317 mol * 32.065 g/mol = 3.329 g of sulfur
Let me know if you get something else or if something is unclear in the comments so that we can figure it out.
The factors that affect the rate of a reaction are:
- <em>nature of the reactant</em> - when reactants with different chemical composition are exposed to same conditions they would react differently. For instance, when an acid or base is added on litmus paper, blue litmus paper turns red in presence of acid while red litmus paper turns blue when base is added.
- <em>surface area</em>- a compound with small pieces spread over a large area will react faster than a big lump of a compound occupying a small area.
- <em>temperature of reaction</em>- reactants would react faster at high temperatures. this is because they have higher kinetic energy to collide with each other. Hence a plate of food on the table spoils faster than a plate of food in the fridge.
- <em>concentration</em>- an increase in concentration leads to more molecules available to collide and form products. An example, when you add more of indicator in a solution, the color becomes more clear since more particles react to give more color.
- <em>presence of a catalyst</em>- a catalyst lowers the activation energy, which means less energy is required to shift reaction in forward direction. In the presence of iron (Fe) a catalyst, nitrogen N₂ and hydrogen H₂ react to produce NH₃
Pushing down a piston in an airtight cylinder would tend to increase the pressure in the system since the particle collision and collisions with the walls are now more frequent. Also, pushing further, the gas would undergo a phase change from gas to a liquid.