Answer:
1.06 V
Explanation:
The standard reduction potentials are:
Ag^+/Ag E° = 0.7996 V
Ni^2+/Ni E° = -0.257 V
The half-cell and cell reactions for Ni | Ni^2+ || Ag^+ | Ag are
Ni → Ni^2+ + 2e- E° = 0.257 V
<u>2Ag^+ 2e- → 2Ag </u> <u>E° = 0.7996 V
</u>
Ni + 2Ag^+ → Ni^2+ + 2Ag E° = 1.0566 V
To three significant figures, the standard potential for the cell is 1.06 V
.
Energy is released by the formation of chemical bonds, and energy is
absorbed when the bonds are broken.
<h3>What is a chemical reaction?</h3>
A chemical reaction involves the formation of new compounds from
reactants . It involves the formation and breaking of bonds in the
elements.
Energy is released by the formation of chemical bonds and this type of
reaction is referred to as exothermic while energy is absorbed when the
bonds are broken and is referred to as an endothermic reaction.
Read more about Chemical reaction here brainly.com/question/16416932
I believe an atom. may be wrong, science is not my strong suit
2 C₇H₆O₂ + 15 O₂ → 14 CO₂ + 6 H₂O
<u>Explanation:</u>
C₇H₆O₂ + O₂ → CO₂ + H₂O
First we have to balance the O- atoms, we have to put 6 in front of water so there are 12 H atoms on RHS, to balance it we need to put 2 in front of C₇H₆O₂, and so we have 14 C - atoms on LHS, 28 + 6 = 34 O - atoms on RHS, so we have to put 15 in front of Oxygen in LHS, so that each and every atom in the equation gets balanced now. The balanced equation is, 2 C₇H₆O₂ + 15 O₂ → 14 CO₂ + 6 H₂O
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium carbonate and lead (II) nitrate is given as:

Ionic form of the above equation follows:

As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.