The mass of atoms of carbon and 3 molecules of hydrogen : 18 g/mol
<h3>Further explanation
</h3>
An atomic mass unit ( amu or "u") is a relative atomic mass of 1/12 the mass of an atom of carbon-12.
The molar mass(molecular mass-formula mass-molecular weight(MW)) of a compound is the sum of the relative atomic mass (Ar) of the constituent elements of the compound
Can be formulated :
M AxBy = (x.Ar A + y. Ar B)
The mass of atom of Carbon(C)⇒Ar = 12 g/mol
The mass of 1 molecule of Hydrogen - H₂(MW) : 2 g/mol
The mass of 3 molecules of Hydrogen : 3 x 2 = 6 g/mol
So the mass of atoms of carbon and 3 molecules of hydrogen :

Answer:
1.7
Explanation:
Density = M/V
When you divide 4.52 by 2.6, you get 1.738461538, which can be simplified to 1.7.
When it’s warmer so when temperature encreases
Answer: The volume occupied by 2.50 moles of
gas at STP is 56.0L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = ?
n = number of moles = 2.50
R = gas constant =
T =temperature =
(at STP)


Thus the volume occupied by 2.50 moles of
gas at STP is 56.0L