<span>Answer:
Graham's law of gaseous effusion states that the rate of effusion goes by the inverse root of the gas' molar mass.
râšM = constant
Therefore for two gases the ratio rates is given by:
r1 / r2 = âš(M2 / M1)
For Cl2 and F2:
r(Cl2) / r(F2) = âš{(37.9968)/(70.906)}
= 0.732 (to 3.s.f.)</span>
The net equations are obtained from the double displacement of the cations and anions, then balance.
NH3(aq) + HC2H3O2 (aq) = NH4+(aq) + C2H3O2-(aq<span>)
</span><span>H+(aq) + C2H3O2-(aq) + NH3(aq) -> NH4+(aq) + C2H3O2-(aq)</span><span>
</span><span>2NaOH(aq) + H2SO4 (aq) = Na2SO4 (s)+ 2H2O (aq)
</span>H2S (aq) + Ba(OH)2 (aq) = BaS (s)+ 2H2O (aq)
C (667) that’s the answer boiii
Answer:
0.302 moles
Explanation:
Data given
Mass of Pb(NO₃)₂ = 100 g
Moles of Pb(NO₃)₂ = ?
Solution:
To find mole we have to know about molar mass of Pb(NO₃)₂
So,
Molar mass of Pb(NO₃)₂ = 207 + 2[14 + 3(16)]
= 207 + 2[14 + 48]
= 207 + 124
Molar mass of Pb(NO₃)₂ = 331 g/mol
Formula used :
no. of moles = mass in grams / molar mass
Put values in above formula
no. of moles = 100 g / 331 g/mol
no. of moles = 0.302 moles
no. of moles of Pb(NO₃)₂ = 0.302 moles