Answer:
nobmelonisegxfixcyctGkchkcigdtidtifyoc
Answer:
Temperature stays constant.
Explanation:
During a phase change, the temperature does not change. Temperature will only change when a phase change is completed.
Answer:
A) oxidizing agent is SO2
B) NaClO is the oxidizing agent
Explanation:
A) This is a redox reaction in which oxidation and reduction occur simultaneously.
Thus, in 2H2S(g) + SO2(g) -> 2H2O(l) + 3S(s);
H2S is reduced as follows;
H2S → S + 2H+ + 2e−
We can see that SO2 has been reduced while H2S gets oxidized since it has changed state from - 2 to 0 . Thus sulphur dioxide is the oxidizing agent.
B) SO2(g) + H2O(l) + NaClO(aq) -> NaCl(aq) + H2SO4(aq)
In this, SO2 undergoes oxidation and NaClO is the oxidizing agent
I believe its true , because when two elements form different compounds a given mass of one element will combine with the other , during any chemical change atoms arent created or destroyed they are jus rearranged
Answer:
The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg
Explanation:
Heat gain by ice = Heat lost by water
Thus,
Heat of fusion + 
Where, negative sign signifies heat loss
Or,
Heat of fusion + 
Heat of fusion = 334 J/g
Heat of fusion of ice with mass x = 334x J/g
For ice:
Mass = x g
Initial temperature = 0 °C
Final temperature = 6 °C
Specific heat of ice = 1.996 J/g°C
For water:
Volume = 353 mL
Density of water = 1.0 g/mL
So, mass of water = 353 g
Initial temperature = 26 °C
Final temperature = 6 °C
Specific heat of water = 4.186 J/g°C
So,


345.976x = 29553.16
x = 85.4197 kg
Thus,
<u>The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg</u>