Explanation:
Upon dissolution of KCl heat is generated and temperature of the solution raises.
Therefore, heat generated by dissolving 0.25 moles of KCl will be as follows.

= 4.31 kJ
or, = 4310 J (as 1 kJ = 1000 J)
Mass of solution will be the sum of mass of water and mass of KCl.
Mass of Solution = mass of water + (no. of moles of KCl × molar mass)
= 200 g + 
= 200 g + 13.625 g
= 213.625 g
Relation between heat, mass and change in temperature is as follows.
Q = 
where, C = specific heat of water = 
Therefore, putting the given values into the above formula as follows.
Q = 
4310 J =
Thus, we can conclude that rise in temperature will be
.
Clorine gas was formed at the <em><u>positive</u></em><em><u> </u></em><em><u>electrode</u></em><em><u>.</u></em><em><u> </u></em>
Answer: Option (a) is the correct answer.
Explanation:
Ionic salts are defined as the salts which tend to contain ionic bonds as there occurs transfer of electrons between its combining atoms.
So, when an ionic salt melts or it is dissolved in water then it will dissociate into its respective ions and as electricity is the flow of electrons or ions. Hence, this salt is then able to conduct electricity.
As covalent compounds are insoluble in water so, they do no dissociate into ions. Hence, they do not conduct electricity.
Similarly, metallic and network solids do not dissociate into ions either when melted or dissolved in water. Therefore, they also do not conduct electricity.
Thus, we can conclude that when a white crystalline salt conducts electricity when it is melted and when it dissolves in water then this bond is of ionic type.
Answer:
Aluminium.
Explanation:
The above electronic configuration can be written in a simplified form as shown below:
1s² 2s²2p⁶ 3s²3p¹
Next, we shall determine the number of electrons in the atom of the element as follow:
Number electron = 2 + 2 + 6 + 2 + 1
Number of electron = 13
Next, we shall determine the number of protons.
Since the element is in its neutral state,
The number of electrons and protons are equal i.e
Proton = Electron
Number of electron = 13
Proton = Electron = 13
Proton = 13
Next, we shall determine the atomic number of the element.
The atomic number of an element is simply the number of protons in the atom of the element i.e
Atomic number = proton number
Proton = 13
Atomic number = 13
Comparing the atomic number of the element with those in the periodic table, the element with the above electronic configuration is aluminium since no two elements have the same atomic number.
Jim, because he ran a greater distance in the same time :)
By the way, this is a maths question