Explanation:
There are two components of a longitudinal sound wave which are compression and rarefaction. Similarly, there are two components of the transverse wave, the crest, and trough.
The crest of a wave is defined as the part that has a maximum value of displacement while the trough is defined as the part which corresponds to minimum displacement.
While compression is that space where the particles are close together while the rarefaction is that space where the particles are far apart from each other.
So, the refraction or the rarefied part of a longitudinal sound wave is analogous to a trough of a transverse wave.
Answer:
The speed of the cyclist is 2.75 km/min.
Explanation:
Given
To determine
We need to find the speed of a cyclist.
In order to determine the speed of a cyclist, all we need to do is to divide the distance covered by a cyclist by the time taken to cover the distance.
Using the formula involving speed, time, and distance

where
substitute d = 88, and t = 32 in the formula


Cancel the common factor 8

km/min
Therefore, the speed of the cyclist is 2.75 km/min.
When an object is becomes warm its an example of exothermic reaction.
Answer:
3.39724 seconds
23.0824792352 m, 101.917520765 m
13.58896 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
The equation of motion will be


The time at which the cars collide is 3.39724 seconds

Car B traveled 23.0824792352 m and Car A traveled 125-23.0824792352 = 101.917520765 m

The speed of car B is 13.58896 m/s
Answer:
A 2 d vector model
The acceleration function is -9.8 m/s2 which is gravity
Initial velocity on the Y axis is 0, on the X axis is 12 m/s
Inital position is 20 mts above the ground.
It takes the water 1.01 seconds to reach the other building.
THe distace from one building to the other is 12.11 meters.
Explanation:
In order to solve this you just need to carefully read the problem and the data you are given, and use the formula for height in free fall:

So first the data, we know that the water is coming out at a height of 20 meters since the building is 19 meters tall and the fireman is holding the firehose 1 meter above it, and the water is hitting the second building at a height of 15 meters, that means that the water is travelin -5meters.
Gravity as it doesn´t say otherwise would be 9.8m/s2 since that is gravity on earth, and water is leaving the firehose at 12m/s horizontally.
We can calculate the time by using the height formula fro free fall:

So it takes 1.009 seconds for the water to frop from 20 to 15 meters, as the horizontal velocity remains the same we just multiply it by the time and we get the horizontal distance between the two buildings and that would be:
12.11 meters.