Answer:
It would be lower than because, if the boiling point of that element is 77 Kelvin degrees then if it isn’t at boiling point it would automatically be cooler than that. Even if it’s at its original state. The normal temperature of Liquid Nitrogen is really cold -320.8 degrees.
YOU’RE WELCOME
First thing to do is to draw the system described above. Then, write an equation for the forces present.
<span>
</span>Σ<span>F = Fg - Ff
</span><span>0 = mgsin</span><span>∅</span><span> - umgcos</span><span>∅</span><span>0 = gsin</span><span>∅</span><span> - ugcos</span><span>∅</span><span>
u = tan</span><span>∅
</span>∅(max) = tan^-1 (u)<span>
</span>
Answer:
A) Emin = eV
B) Vo = (E_light - Φ) ÷ e
Explanation:
A)
Energy of electron is the product of electron charge and the applied potential difference.
The energy of an electron in this electric field with potential difference V will be eV. Since this is the least energy that the electron must reach to break out, then the minimum energy required by this electron will be;
Emin = eV
B)
The maximum stopping potential energy is eVo,
The energy of the electron due to the light is E_light.
If the minimum energy electron must posses is Φ, then the minimum energy electron must have to reach the detectors will be equal to the energy of the light minus the maximum stopping potential energy
Φ = E_light - eVo
Therefore,
eVo = E_light - Φ
Vo = (E_light - Φ) ÷ e
The question extends beyond what I already know.
The question makes me curious.
The best answer would be the 4th choice. "They help scientists explain concepts that are difficult to observe, this also covers the first answer which helps the scientist to answer complex questions. A scientific model is not used prove scientific laws as they may not always have all the data to prove so, instead it is used to allow them to explain better concepts revolving around science through research and may also allow them to predict results based on the accumulation of data and analyzing the trend of this resulting information.